Supporting Information

Pd/C-Catalyzed Reductive Carbonylation of Nitroaromatics for the Synthesis of Unsymmetrical Ureas: One-Step Synthesis of Neburon

Chong-Liang Li, ${ }^{[a]}$ Jin-Bao Peng, ${ }^{*[a]}$ Xinxin Qi, ${ }^{[a]]}$ Jun Ying, ${ }^{[a]}$ and Xiao-Feng Wu ${ }^{*[a, b]}$
[a] Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018 (People's Republic of China)
[b] Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock (Germany)

CONTENTS

1. General details and materials
2. Optimization of the Reaction Condition
3. General Procedure
4. Spectroscopic Data of Products
5. Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products

1. General details and materials

All reactions were carried out under N_{2} atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques, and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (b.p. $60 \sim 90^{\circ} \mathrm{C}$) and ethyl acetate as eluent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken on 400 MHz instruments and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR $\left.\delta 7.26,{ }^{13} \mathrm{C} \operatorname{NMR} \delta 77.0\right)$ as solvent. All coupling constants (J) are reported in Hz with the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ double triplet, $\mathrm{q}=$ quatriplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

The structure of the starting materials:

2. Optimization of the Reaction Condition ${ }^{\text {a }}$

		$\mathrm{J}^{\mathrm{NO}_{2}}+\mathrm{HNE}_{2}-$	[Pd], Mo(CO) additive, solven $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$			
Entry	[Pd]	Ligand	additive	Solvent	Base	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	BINAP (3\%)	-	1,4-dioxane	-	20
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	BINAP (3\%)	MeI	1,4-dioxane	-	62
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	BINAP (3\%)	TBAI	1,4-dioxane	-	55
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	BINAP (3\%)	NaI	1,4-dioxane	-	78
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	BINAP (3\%)	KI	1,4-dioxane	-	52
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	Xantphos (3\%)	NaI	1,4-dioxane	-	58
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	dppp (3\%)	NaI	1,4-dioxane	-	54
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	$\mathrm{PPh}_{3}(6)$	NaI	1,4-dioxane	-	51
9	$\mathrm{Pd}(\mathrm{OAc})_{2}(3 \%)$	$\mathrm{PCy}_{3}(6)$	NaI	1,4-dioxane	-	70
10	$\mathbf{P d} / \mathbf{C}(10 \mathrm{mg})$	-	NaI	1,4-dioxane	-	79
11	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \%)$	-	NaI	1,4-dioxane	-	72
12	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \%)$	-	NaI	1,4-dioxane	-	78
13	$\mathrm{PdCl}_{2}(2 \%)$	BINAP (5)	NaI	1,4-dioxane	-	72
14	-	-	NaI	1,4-dioxane	-	63
$15^{\text {c }}$	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	1,4-dioxane		0
16	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	toluene		67
17	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	$\mathrm{CH}_{3} \mathrm{CN}$		38
18	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	DMF		15
19	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	Cyclohexane		56
$20^{\text {d }}$	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	1,4-dioxane	DABCO	16
$21^{\text {d }}$	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	1,4-dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	trace
$22^{\text {d }}$	$\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$	-	NaI	1,4-dioxane	DBU	6\%

${ }^{a}$ Reaction conditions: $\mathbf{1 d}(1.5 \mathrm{mmol}), \mathbf{2 a}(1.0 \mathrm{mmol}), \mathrm{Mo}(\mathrm{CO})_{6}(1.0 \mathrm{mmol})$, additive $(0.2 \mathrm{mmol})$, solvent (2 mL), $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\mathrm{c}} 1.0 \mathrm{mmol} \mathrm{H}_{2} \mathrm{O}$ was added.
${ }^{\mathrm{d}}$ base (1.5 mmol), 1,4-dioxane (4 mL)

3. General Procedure

An oven-dried tube, which was equipped with a magnetic stir bar, was charged with Pd / C (10 mg), $\mathrm{Mo}(\mathrm{CO})_{6}$ (1.0 equiv.), NaI (0.2 equiv.) and nitroarenes (1.5 equiv.) at room temperature. The tube was evacuated and backfilled with N_{2} (this process was repeated 3 times). Then, a solution of diethylamine ($1.0 \mathrm{mmol}, 1.0$ equiv.) in 1,4-dioxane (2 mL) was added to the reaction tube via syringe. The tube was sealed and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed, the reaction mixture was cooled to room temperature and filtered through a pad of Celite using excess EtOAc. The crude product was purified via flash chromatography (petroleum ether / ethyl acetate 5:1) to provide the pure product.

4. Spectroscopic Data of Products

1,1-Diethyl-3-phenylurea, 3aa, 56\% yield

Following general procedure, using nitrobenzene ($155 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}$, 1.0 mmol), Compound $3 \mathrm{aa}(107.6 \mathrm{mg}, 56 \%$ yield) was a yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 154.54,139.26,128.72,122.68,119.75,41.54,13.87$.

1,1-Diethyl-3-(o-tolyl)urea, 3ba, 64% yield
Following general procedure, using 1-methyl-2-nitrobenzene ($179 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound 3ba ($131.8 \mathrm{mg}, 64 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=18.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.70,137.37,130.19,127.91,126.71,123.43,122.33,41.70$, 17.81, 13.93.

1,1-Diethyl-3-(m-tolyl)urea, 3ca, 71% yield
Following general procedure, using 1-methyl-3-nitrobenzene ($180 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound $3 \mathrm{cg}(146.3 \mathrm{mg}, 71 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.36-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.56,139.16,138.59,128.53,123.50,120.42,116.73,41.56$, 21.42, 13.88.

1,1-Diethyl-3-(p-tolyl)urea, 3da, 79\% yield
Following general procedure, using 1-methyl-4-nitrobenzene ($207.8 \mathrm{mg}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound 3da (162.7 mg , 79% yield) was a yellow powder.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $3.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 154.80,136.73,132.24,129.27,120.07,41.56,20.69,13.92$.

1,1-Diethyl-3-(4-(methylthio)phenyl)urea, 3ea, 65% yield
Following general procedure, using methyl(4-nitrophenyl)sulfane ($256.3 \mathrm{mg}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound $\mathbf{3 e a}(154.7 \mathrm{mg}, 65 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H})$, $3.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.46,137.21,131.43,128.57,120.44,41.59,17.24,14.03$.

1,1-Diethyl-3-(3-fluorophenyl)urea, 3fa, 70% yield
Following general procedure, using 1-fluoro-3-nitrobenzene ($161 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and diethylamine $(105 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$, Compound $\mathbf{3 f a}(147.0 \mathrm{mg}, 70 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=14.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{td}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}$, CDCl $\left._{3}\right) \delta 162.96\left(\mathrm{~d}, J_{\mathrm{CF}}=243.3 \mathrm{~Hz}\right), 154.22,141.05\left(\mathrm{~d}, J_{\mathrm{CF}}=11.2 \mathrm{~Hz}\right)$, $129.55\left(\mathrm{~d}, J_{\mathrm{CF}}=9.6 \mathrm{~Hz}\right), 114.82,109.07\left(\mathrm{~d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}\right), 106.97\left(\mathrm{~d}, J_{\mathrm{CF}}=26.3 \mathrm{~Hz}\right), 41.47$, 13.76.

3-(4-Chlorophenyl)-1,1-diethylurea, 3ga, 73\% yield
Following general procedure, using 1-chloro-4-nitrobenzene ($238.7 \mathrm{mg}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound 3ga (165.0 mg , 73% yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H})$, $3.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.42$, 137.99, 128.66, 127.58, 121.12, 41.57, 13.89.

3-(4-Bromophenyl)-1,1-diethylurea, 3ha, 83% yield
Following general procedure, using 1-bromo-4-nitrobenzene ($306.1 \mathrm{mg}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound 3ha ($224.9 \mathrm{mg}, 83 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H})$, $3.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{3}_{3}$) $\delta 154.27$, 138.43, 131.57, 121.34, 115.06, 41.55, 13.85.

1,1-Diethyl-3-(4-vinylphenyl)urea, 3ia, 46\% yield
Following general procedure, using 4-nitrostyrene ($194 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and diethylamine ($105 \mu \mathrm{~L}$, 1.0 mmol), Compound $\mathbf{3 c g}$ ($100.3 \mathrm{mg}, 46 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.34(\mathrm{~m}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.65(\mathrm{dd}, J=17.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}$, $1 \mathrm{H}), 5.64(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.22(\mathrm{t}, J=7.1$ Hz, 6H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.39,138.95,136.30,132.21,126.68,119.53,112.04,41.61$, 13.91.

\mathbf{N}-(p-tolyl)pyrrolidine-1-carboxamide, 3db, 58\% yield
Following general procedure, using 1-methyl-4-nitrobenzene ($207.8 \mathrm{mg}, 1.5 \mathrm{mmol}$) and tetrahydropyrrole ($83 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound $\mathbf{3 d b}(118.3 \mathrm{mg}, 58 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H})$, $3.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.09,136.62,132.10,129.23,119.69,45.70,25.54,20.65$.

1-(tert-Butyl)-3-(p-tolyl)urea, 3dc, 69% yield
Following general procedure, using 1-methyl-4-nitrobenzene ($207.8 \mathrm{mg}, 1.5 \mathrm{mmol}$) and tert-butylamine ($106 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound 3dc ($142.1 \mathrm{mg}, 69 \%$ yield) was a yellow powder.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.38(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 155.75,136.52,132.54,129.53,120.57,50.36,29.30,20.68$.

1-Butyl-3-(3,4-dichlorophenyl)-1-methylurea, 3kd, 64% yield
Following general procedure, using 3,4-dichloronitrobenzene ($290.9 \mathrm{mg}, 1.5 \mathrm{mmol}$) and N-butylmethylamine ($93 \%, 128 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), Compound 3kd ($175.4 \mathrm{mg}, 64 \%$ yield) was a white powder.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 154.86,138.96,132.18,129.97,125.59,121.43,119.16,48.79$, 34.49, 30.01, 19.96, 13.77.

5. Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products

