Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Diaminomalenonitrile decorated cholesterol-based supramolecular gelator: Aggregation, multiple analytes (hydrazine, Hg²⁺ and Cu²⁺) detection and dye adsorption

Atanu Panja and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in

Table 1S. Result of gelation test for compound 1.

Solvent	1			
DMSO	PS			
DMF	S			
CH ₃ CN	PS			
CH ₃ OH	Ι			
Toluene	PG			
CHCl ₃	S			
Pet ether	PS			
Cyclohexane	PS			
Hexane	PS			
DMSO : H ₂ O(1:1,v/v)	Ι			
DMF : H ₂ O (1:1,v/v)	G			
CH ₃ CN : H ₂ O (1:1,v/v)	Ι			
DMF : CH ₃ OH (1:1, v/v)	S			
Toluene : $CH_3OH(1:1, v/v)$	Р			
1,2-dichlorobenzene	G			
S = solution; $G =$ gel; $PS =$ partially soluble; $I =$ insoluble; $PG =$				
partial gel; P = Precipitation. Gelation tests were performed by				
taking 50 mg of the compounds in 1 ml of respective solvent.				

Fig. 1S. Pictorial representation of the thermoreversibility of the gels of 1 in DMF-H₂O (1:1, v/v) and 1,2-dichlorobenzene.

Fig. 2S. Partial FTIR spectra of **1** in (a) amorphous state and gel states in (b) DMF-H₂O (1:1, v/v) and (c) 1,2-dichlorobenzene.

Fig. 3S. partial FTIR spectra of (a) 1 and (b) 1 with hydrazine

Fig. 4S. Change in absorbance of 1 ($c = 2.50 \times 10^{-5} \text{ M}$) with time in presence of equiv. amount of hydrazine ($c = 1.0 \times 10^{-3} \text{ M}$) at 323 nm.

Fig. 5S. Benesi–Hilderband plot for 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with hydrazine ($c = 1.0 \times 10^{-3} \text{ M}$) at 323 nm in DMF-H₂O (1:1, v/v).

Fig. 6S. Detection limit of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with hydrazine ($c = 1.0 \times 10^{-3} \text{ M}$) at 323 nm in DMF-H₂O (1:1, v/v).

Table 2S: Reported structures for hydrazine sensing in solution phase.

Entry	Structure of compounds	Gel phase detection	Sensing mechanism	solvent	Detection limit (M)	Ref.
		uccention				
1	СНООН	No	Fluorescence enhancement	ethanol/water/a cetic acid = 30/66/4	8.0 x 10 ⁻⁸	1
2	N CF3	No	Ratiometric fluorescence response	CH ₃ CN	3.38 x 10 ⁻⁶	2a
3	O OH N CF3	No	fluorimetric and colorimetric sensing	CH₃CN	1.0 x 10 ⁻⁷	2b
4	$R = (CH_2)_2O(CH_2)_2OH$	No	fluorimetric and colorimetric sensing	PBS buffer (pH 7.2, 10 mM) and EtOH (1:9, v/v);	4.2 x 10 ⁻⁹	3a
5		No	fluorimetric and colorimetric sensing	DMSO-H ₂ O (6:4)	8.8 x 10 ⁻⁹	3b
6	NH ₂ 0 0 0 0	No	Colorimetric and ratiometric fluorescence sensing	H ₂ O/DMSO (3:7, v/v)	1.0 x 10-7	3с
7		No	ICT-based ratiometric response	DMSO	7.0 x 10 ⁻¹⁰	4a
8		No	Colorimetric and 'turn-on' fluorescence response	DMF-Tris. HCl buffer (10 mM, pH = 7.4, 7 : 3, v/v)	1.21 x 10 ⁻⁸	4b

9		No	Fluorimetric and colorimetric sensing	DMSO - tris buffer (pH 8.0, 10 mM, 1 : 1, v/v)	9.0 x 10 ⁻⁸	5
10		No	Colorimetric and 'turn-on' fluorescence response	acetate buffer (pH 4.5, 10mM) and DMSO (3:7, v/v)	2.65 x 10 ⁻⁶	6
11		No	Ratiometric fluorescence response	CH ₃ CN:H2O (2:3, v/v, pH = 7.4, 1 mM HEPES buffer)	6.6 x 10 ⁻⁸	7
12		yes	Indirect redox approach	Isopropanol – water (1 : 1, v/v)	-	8
Our work	$R = -\frac{1}{2} \left(\begin{array}{c} CN \\ NC \\ NH_{2} \\ NH_{2}$	Yes	Chemodosimetric approach Visual sensing through Gel-to- sol phase transition	DMF/H ₂ O (1:1, v/v)	2.54 x 10 ⁻⁶	

Fig. 7S. Partial ¹H NMR spectra of (a) 1 ($c = 5.60 \times 10^{-3} \text{ M}$), (b) 1 with Hg²⁺ (1:1, c = 0.05 M) and (c) 1 with Cu²⁺ (1:1, c = 0.02 M) in CDCl₃.

Fig. 8S. Benesi–Hilderband plot for 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Hg²⁺ and (b) Cu²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) at 323 nm in DMF-H₂O (1:1, v/v).

Fig. 98. Detection limit of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with Hg²⁺ and (b) Cu²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) at 323 nm in DMF-H₂O (1:1, v/v).

 Table 3S: Reported structures of diaminomalenonitrile based metal sensors

Entry	Structure of compounds	Sensing mechanism	solvent	Metal ion sense	Detection limit (M)	Ref.
1	NC N NH ₂ HO	colorimetric sensing	MeCN/bis-tris buffer (6 : 4, v/v)	Cu ²⁺	2.1 x 10 ⁻⁶	9
2	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	ICT-based ratiometric response	H ₂ O:CH ₃ CN (1:1, v/v, pH 7.1)	Hg ²⁺	5.2 x 10 ⁻⁶	10
3	O V V V V V V V V V V V V V	colorimetric sensing	DMSO	Cu ²⁺	4.8 x 10 ⁻⁵	11
4		colorimetric sensing	H2O/DMSO (v/v, 60/40)	Cu ²⁺	1.2 x 10 ⁻⁶	12
5	NC NH2 NH2	Colorimetric and 'turn-on' fluorescence response	H ₂ O:CH ₃ CN (1:1, v/v, 10 mM HEPES, pH 7.0)	Cu ²⁺	-	13
6	NC CN N N OH HO N N N	Colorimetric and fluorescence response	CH ₃ CN	Cu ²⁺	4.9 ppb	14
7	$\begin{array}{c} & & \\$	colorimetric sensing	CH ₃ CN	Hg ²⁺	1.1 x 10 ⁻⁷	15

8	C ₆ H ₁₃	Fluorimetric	Ethanol-water	Hg ²⁺	3.5 x 10 ⁻⁸	16
			(7:3)			
	NC. N N. CN	sensing				
	NC NH ₂ H ₂ N CN					
9	NC NH	colorimetric	DMSO	A1 ³⁺	3 82 x 10 ⁻⁵	17
		sensing	211150		5.02 11 10	1,
	NCNH					
	\land \land NO ₂					
Our	CN	Visual sensing	DMF/H ₂ O	Hg ²⁺	2.61 x 10-6	
work	NC NH ₂	through Gel-to-	(1:1, v/v)			
		sol phase				
		transition		G 31	1.50 100	
	Ŭ,			Cu ²⁺	1.59 x 10-6	

Fig. 10S. Partial FTIR spectra of (a) DMF- H_2O (1:1, v/v) gel of 1, (b) Crystal Violet and (c) Crystal Violet adsorbed gel.

Mass spectrum of 3.

Mass spectrum of 1.

References

1. X. Chen, Y. Xiang, Z. Li and A. Tong, Anal. Chim. Acta, 2008, 625, 41.

2. (a) S. Goswami, S. Das, K. Aich, D. Sarkar and T. K. Mondal, *Tetrahedron Lett.*, 2014, 55, 26958; (b)
M. H. Lee, B. Yoon, J. S. Kim and J. L. Sessler, *Chem. Sci.*, 2013, 4, 4121.

(a) M. V. R. Raju, E. C. Prakash, H. –C. Chang and H. –C. Lin, *Dyes Pigm.*, 2014, 103, 9; (b) L. Cui,
 Z. Peng, C. Ji, J. Huang, D. Huang, J. Ma, S. Zhang, X. Qian and Y. Xu, *Chem. Commun.*, 2014, 50, 1485; (c) L. Cui, C. Ji, Z. Peng, L. Zhong, C. Zhou, L. Yan, S. Qu, S. Zhang, C. Huang, X. Qian and Y. Xu, *Anal. Chem.*, 2014, 86, 4611.

4. (a) J. Fan, W. Sun, M. Hu, J. Cao, G. Cheng, H. Dong, K. Song, Y. Liu, S. Sun and X. Peng, *Chem. Commun.*, 2012, **48**, 8117; (b) M. Sun, J. Guo, Q. Yang, N. Xiao and Y. Li, *J. Mater. Chem. B*, 2014, **2**, 1846.

5. M. G. Choi, J. O. Moon, J. Bae, J. W. Lee and S. -K. Chang, Org. Biomol. Chem., 2013, 11, 2961.

6. M. G. Choi, J. Hwang, J. O. Moon, J. Sung and S. -K. Chang, Org. Lett., 2011, 13, 5260.

7. S. Goswami, S. Das, K. Aich, B. Pakhira, S. Panja, S. K. Mukherjee and S. Sarkar, Org. Lett., 2013, 15, 5412.

8. T. He, K. Li, N. Wang, Y. -X. Liao, X. Wang and X. -Q. Yu, Soft Matter, 2014, 10, 3755.

9. T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee and C. Kim, New J. Chem., 2015, 39, 2580.

10. S. Goswami, S. Das, K. Aich, Tetrahedron Lett., 2013, 54, 4620.

- 11. I. J. Chang, M. G. Choi, Y. A. Jeong, S. H. Lee and S. -K. Chang, Tetrahedron Lett., 2017, 58, 474.
- 12. R. Sheng, P. Wang, Y. Gao, Y. Wu, W. Liu, J. Ma, H. Li and S. Wu, Org. Lett., 2008, 10, 5015.
- 13. S. -P. Wu, T. -H. Wang and S. -R. Liu, Tetrahedron, 2010, 66, 6955.
- 14. J. Cheng, Y. Zhang, X. Ma, X. Zhou and H. Xiang, Chem. Commun., 2013, 49, 11791.
- 15. S. R. Patil, A. S. Choudhary and N. Sekar, New J. Chem., 2016, 40, 6803.

16. K. M. Vengaian, C. D. Britto, K. Sekar, G. Sivaraman and S. Singaravadivel, *RSC Adv.*, 2016, **6**, 7668.

17. G. J. Park, H. Y. Jo, K. Y. Ryu and C. Kim, RSC Adv., 2014, 4, 63882.