Novel crabby biological-based glycoluril with alkane sulfonic acid pendings as a reusable nanostructured catalyst: Application for synthesis of new mono and bis-spiropyrans under mild and green conditions and *in vitro* biological performance

Mahmoud Zarei,^a* Hassan Sepehrmansourie, ^a Mohammad Ali Zolfigol, ^a* Roya Karamian ^b* and Seyed Hamed Moazzami Farida ^b

^aDepartment of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Tel: +988138282807, Fax: +988138380709 Iran. E-Mail: mahmoud8103@yahoo.com or zolfi@basu.ac.ir & mzolfigol@yahoo.com.

^bDepartment of Biology, Faculty of Science, Bu-Ali Sina University, P. O. Box 65175/4161, Hamedan, Iran.

Fig. S1: ¹H NMR of glycoluril tetrakis (butane-1-sulfonic acid) (GTBSA)

Fig. S2: ¹³C NMR of glycoluril tetrakis (butane-1-sulfonic acid) (GTBSA)

Fig. S3: ¹H NMR of glycoluril tetrakis (butane-1-sulfonic acid) (GTBSA) a) in DMSO-D2O b) in DMSO

Fig. S5: FT-IR of glycoluril tetrakis (butane-1-sulfonic acid) (GTBSA)

Fig. S6: XRD pattern of glycoluril tetrakis (butane-1-sulfonic acid) (GTBSA) and glycoluril

Fig. S7: Compration FT-IR of GTBSA fresh and reused

Table S1: Scavenging activity (%) of the synthesized compounds at different concentrations (mg

Compound	Concentration (mg ml ⁻¹)					Average
	0.2	0.4	0.6	0.8	1	1
13s	61.50±0.95ª	66.38±1.11ª	71.39±1.48ª	74.52±1.19 ^{cd}	77.22±1.43 ^{cd}	70.20
14s	33.53±0.71e	42.35±1.29 ^g	46.20±0.78g	54.09±1.24 ^h	59.52±1.10 ^g	47.14
85	55.58±3.31 ^b	58.62±0.98 ^{b-d}	70.74±2.84 ^{ab}	81.62±0.37 ^a	89.54±1.55ª	71.22
158	48.84±1.63°	60.72±1.24 ^b	73.35±0.51ª	80.27±1.29 ^{ab}	82.17±1.23 ^b	69.07
75	52.76±0.74 ^b	61.06±2.05 ^b	64.78±0.90 ^{cd}	70.08±0.35 ^e	74.17±0.97 ^d	64.57
16S	47.52±0.80 ^{bc}	56.78±0.83 ^{c-e}	63.08±2.15 ^{de}	70.66±1.79 ^{de}	77.54±1.93°	63.11
11S	53.02±2.74 ^b	53.78±0.58 ^{ef}	62.08±0.74 ^{de}	68.16±1.08e	71.04±1.22 ^e	61.61
10S	46.87±0.43 ^{bc}	51.95±1.29 ^{ef}	53.69±0.35 ^f	56.20±0.40gh	58.71±1.58 ^g	53.48
128	46.79±0.43 ^{bc}	55.16±0.62 ^{d-f}	59.82±2.28e	63.98±0.34 ^f	76.25±0.31 ^{cd}	60.40
9S	54.12±1.17 ^b	61.58±0.64 ^b	70.32±1.15 ^{bc}	76.48±1.10 ^{bc}	84.37±1.32 ^b	69.37
28	44.45±1.80 ^d	55.32±1.27 ^{d-f}	55.43±1.52 ^f	59.40±1.77 ^g	64.10±1.66 ^f	55.47
38	54.45±0.25 ^b	59.17±0.60bc	66.57±1.03°	71.45±1.22 ^{de}	77.43±1.27°	65.81
48	54.89±1.60 ^b	62.42±1.87 ^b	67.77±1.04 ^{bc}	72.21±0.98 ^{de}	77.56±1.51°	66.97
Ascorbic	71.47±1.00 ^a	73.75±0.99ª	77.07±1.51ª	78.86±1.53ª	80.89±1.09ª	76.41
acid						
Quercetin	76.11±0.69 ^a	81.13±1.01 ^a	86.85±1.81ª	88.13±0.92ª	91.85±1.32 ^a	84.81

ml-1), quercetin and ascorbic acid as standard antioxidants

Experiment was performed in triplicate and expressed as mean \pm SD. Values along each column with different superscripts are significantly different (P < 0.05).

¹HNMR spectrum of 3-amino-5-hydroxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2carbonitrile (1S)

¹³CNMR spectrum of 3-amino-5-hydroxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2carbonitrile (1S)

FT-IR spectrum of 3-amino-5-hydroxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2-carbonitrile (1S)

Mass spectrum of 3-amino-5-hydroxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2-carbonitrile (1S)

¹HNMR spectrum of 6-hydroxy-8,9-dihydro-10H-spiro[benzo[f]cyclopenta[b]chromene-11,3'indoline]-2',10-dione (2S)

¹³CNMR spectrum of 6-hydroxy-8,9-dihydro-10H-spiro[benzo[f]cyclopenta[b]chromene-11,3'-indoline]-2',10-dione (2S)

FT-IR spectrum of 6-hydroxy-8,9-dihydro-10H-spiro[benzo[f]cyclopenta[b]chromene-11,3'-indoline]-2',10-dione (2S)

Mass spectrum of 6-hydroxy-8,9-dihydro-10H-spiro[benzo[f]cyclopenta[b]chromene-11,3'-indoline]-2',10-dione (2S)

¹HNMR spectrum of 6-hydroxy-9,9-dimethyl-9,10-dihydrospiro[benzo[a]xanthene-12,3'indoline]-2',11(8H)-dione (3S)

¹³CNMR spectrum of 6-hydroxy-9,9-dimethyl-9,10-dihydrospiro[benzo[a]xanthene-12,3'indoline]-2',11(8H)-dione (3S)

FT-IR spectrum of 6-hydroxy-9,9-dimethyl-9,10-dihydrospiro[benzo[a]xanthene-12,3'-indoline]-2',11(8H)-dione (3S)

Mass spectrum of 6-hydroxy-9,9-dimethyl-9,10-dihydrospiro[benzo[a]xanthene-12,3'-indoline]-2',11(8H)-dione (3S)

¹HNMR spectrum of 6-hydroxyspiro[benzo[5,6]chromeno[2,3-d]pyrimidine-12,3'-indoline]-2',9,11(8H,10H)-trione (4S)

¹³CNMR spectrum of 6-hydroxyspiro[benzo[5,6]chromeno[2,3-d]pyrimidine-12,3'-indoline]-2',9,11(8H,10H)-trione (4S)

FT-IR spectrum of 6-hydroxyspiro[benzo[5,6]chromeno[2,3-d]pyrimidine-12,3'-indoline]-2',9,11(8H,10H)-trione (4S)

Mass spectrum of 6-hydroxyspiro[benzo[5,6]chromeno[2,3-d]pyrimidine-12,3'-indoline]-2',9,11(8H,10H)-trione (4S)

¹*HNMR* spectrum of 3-amino-5-hydroxy-5'-methoxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2-carbonitrile (5S)

¹³CNMR spectrum of 3-amino-5-hydroxy-5'-methoxy-2'-oxospiro[benzo[f]chromene-1,3'indoline]-2-carbonitrile (5S)

FT-IR spectrum of 3-amino-5-hydroxy-5'-methoxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2-carbonitrile (5S)

Mass spectrum of 3-amino-5-hydroxy-5'-methoxy-2'-oxospiro[benzo[f]chromene-1,3'-indoline]-2-carbonitrile (5S)

¹HNMR spectrum of 6-hydroxy-9,11-dimethylspiro[benzo[5,6]chromeno[3,2d]pyrimidine-12,3'-indoline]-2',8,10(9H,11H)-trione (6S)

¹³CNMR spectrum of 6-hydroxy-9,11-dimethylspiro[benzo[5,6]chromeno[3,2d]pyrimidine-12,3'-indoline]-2',8,10(9H,11H)-trione (6S)

FT-IR spectrum of 6-hydroxy-9,11-dimethylspiro[benzo[5,6]chromeno[3,2-d]pyrimidine-12,3'-indoline]-2',8,10(9H,11H)-trione (6S)

¹HNMR spectrum of 2',7'-diamino-2,2'',5',10'-tetraoxo-5',10'-dihydrodispiro[indoline-3,4'pyrano[2,3-g]chromene-9',3''-indoline]-3',8'-dicarbonitrile (7S)

¹³CNMR spectrum of 2',7'-diamino-2,2'',5',10'-tetraoxo-5',10'-dihydrodispiro[indoline-3,4'pyrano[2,3-g]chromene-9',3''-indoline]-3',8'-dicarbonitrile (7S)

FT-IR spectrum of 2',7'-diamino-2,2'',5',10'-tetraoxo-5',10'-dihydrodispiro[indoline-3,4'-pyrano[2,3-g]chromene-9',3''-indoline]-3',8'-dicarbonitrile (7S)

Mass spectrum of 2',7'-diamino-2,2'',5',10'-tetraoxo-5',10'-dihydrodispiro[indoline-3,4'-pyrano[2,3-g]chromene-9',3''-indoline]-3',8'-dicarbonitrile (7S)

¹HNMR spectrum of (3R)-6,6"-dimethoxy-3',4',10',11'-tetrahydrodispiro[indoline-3,7'chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (8S)

¹³CNMR spectrum of (3R)-6,6"-dimethoxy-3',4',10',11'-tetrahydrodispiro[indoline-3,7'chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (8S)

FT-IR spectrum of (3*R*)-6,6"-dimethoxy-3',4',10',11'-tetrahydrodispiro[indoline-3,7'chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (8S)

Mass spectrum of (3R)-6,6"-dimethoxy-3',4',10',11'-tetrahydrodispiro[indoline-3,7'chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (8S)

¹HNMR spectrum of (3R)-2'-amino-8',8'-dimethyl-2,2",5',10',12'-pentaoxo-5',7',8',9',10',12'hexahydrodispiro[indoline-3,4'-pyrano[2,3-b]xanthene-11',3"-indoline]-3'-carbonitrile (9S)

¹³CNMR spectrum of (3R)-2'-amino-8',8'-dimethyl-2,2",5',10',12'-pentaoxo-5',7',8',9',10',12'hexahydrodispiro[indoline-3,4'-pyrano[2,3-b]xanthene-11',3"-indoline]-3'-carbonitrile (9S)

FT-IR spectrum of (3R)-2'-amino-8',8'-dimethyl-2,2",5',10',12'-pentaoxo-5',7',8',9',10',12'-hexahydrodispiro[indoline-3,4'-pyrano[2,3-b]xanthene-11',3"-indoline]-3'-carbonitrile (9S)

Mass spectrum of (3R)-2'-amino-8',8'-dimethyl-2,2",5',10',12'-pentaoxo-5',7',8',9',10',12'hexahydrodispiro[indoline-3,4'-pyrano[2,3-b]xanthene-11',3"-indoline]-3'-carbonitrile (9S)

¹HNMR spectrum of 2'-amino-2,2",5',9',11'-pentaoxo-5',8',9',11'-tetrahydro-7'Hdispiro[indoline-3,4'-cyclopenta[b]pyrano[2,3-g]chromene-10',3"-indoline]-3'-carbonitrile (10S)

¹³CNMR spectrum of 2'-amino-2,2",5',9',11'-pentaoxo-5',8',9',11'-tetrahydro-7'Hdispiro[indoline-3,4'-cyclopenta[b]pyrano[2,3-g]chromene-10',3"-indoline]-3'-carbonitrile (10S)

FT-IR spectrum of 2'-amino-2,2'',5',9',11'-pentaoxo-5',8',9',11'-tetrahydro-7'Hdispiro[indoline-3,4'-cyclopenta[b]pyrano[2,3-g]chromene-10',3''-indoline]-3'-carbonitrile (10S)

Mass spectrum of 2'-amino-2,2",5',9',11'-pentaoxo-5',8',9',11'-tetrahydro-7'Hdispiro[indoline-3,4'-cyclopenta[b]pyrano[2,3-g]chromene-10',3''-indoline]-3'-carbonitrile (10S)

¹*HNMR spectrum of* 5,5"-dimethoxy-3',3',10',10'-tetramethyl-3',4',10',11'tetrahydrodispiro[indoline-3,7'-chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone *(11S)*

¹³CNMR spectrum of 5,5"-dimethoxy-3',3',10',10'-tetramethyl-3',4',10',11'-tetrahydrodispiro[indoline-3,7'-chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (*11S*)

FT-IR spectrum of 5,5"-dimethoxy-3',3',10',10'-tetramethyl-3',4',10',11'-tetrahydrodispiro[indoline-3,7'-chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (*11S*)

Mass spectrum of 5,5"-dimethoxy-3',3',10',10'-tetramethyl-3',4',10',11'tetrahydrodispiro[indoline-3,7'-chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (11S)

¹HNMR spectrum of (10'R)-8'-amino-2,2',2'',4',6',11'-hexaoxo-1',2',3',4',6',11'hexahydrodispiro[indoline-3,5'-pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-10',3''-indoline]-9'carbonitrile (12S)

¹³CNMR spectrum of (10'R)-8'-amino-2,2',2",4',6',11'-hexaoxo-1',2',3',4',6',11'hexahydrodispiro[indoline-3,5'-pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-10',3"-indoline]-9'carbonitrile (12S)

FT-IR spectrum of (10'R)-8'-amino-2,2',2",4',6',11'-hexaoxo-1',2',3',4',6',11'hexahydrodispiro[indoline-3,5'-pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-10',3"-indoline]-9'carbonitrile (12S)

Mass spectrum of (10'R)-8'-amino-2,2',2'',4',6',11'-hexaoxo-1',2',3',4',6',11'hexahydrodispiro[indoline-3,5'-pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-10',3''-indoline]-9'carbonitrile (12S)

¹HNMR spectrum of 3',3',10',10'-tetramethyl-3',4',10',11'-tetrahydrodispiro[indoline-3,7'chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (13S)

¹³CNMR spectrum of 3',3',10',10'-tetramethyl-3',4',10',11'-tetrahydrodispiro[indoline-3,7'- chromeno[2,3-b]xanthene-14',3"-indoline]-1',2,2",6',8',13'(2'H,9'H)-hexaone (13S)

FT-IR spectrum of 3',3',10',10'-tetramethyl-3',4',10',11'-tetrahydrodispiro[indoline-3,7'-chromeno[2,3-b]xanthene-14',3''-indoline]-1',2,2'',6',8',13'(2'H,9'H)-hexaone (13S)

Mass spectrum of 3',3',10',10'-tetramethyl-3',4',10',11'-tetrahydrodispiro[indoline-3,7'-chromeno[2,3-b]xanthene-14',3''-indoline]-1',2,2'',6',8',13'(2'H,9'H)-hexaone (13S)

¹HNMR spectrum of dispiro[indoline-3,5'-pyrido[3",4":5',6']pyrano[2',3':6,7]chromeno[2,3d]pyrimidine-12',3"-indolin]-2,2',2",4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (14S)

¹³CNMR spectrum of dispiro[indoline-3,5'-pyrido[3",4":5',6']pyrano[2',3':6,7]chromeno[2,3d]pyrimidine-12',3"-indolin]-2,2',2",4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (14S)

FT-IR spectrum of dispiro[indoline-3,5'-pyrido[3'',4'':5',6']pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-12',3''-indolin]-2,2',2'',4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (14S)

Mass spectrum of dispiro[indoline-3,5'-pyrido[3'',4'':5',6']pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-12',3''-indolin]-2,2',2'',4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (14S)

¹HNMR spectrum of 2',3',8',9'-tetrahydro-1'H,7'H-dispiro[indoline-3,6'cyclopenta[5,6]pyrano[2,3-g]cyclopenta[b]chromene-12',3''-indoline]-1',2,2'',5',7',11'-hexaone (15S)

¹³CNMR spectrum of 2',3',8',9'-tetrahydro-1'H,7'H-dispiro[indoline-3,6'cyclopenta[5,6]pyrano[2,3-g]cyclopenta[b]chromene-12',3''-indoline]-1',2,2'',5',7',11'-hexaone (15S)

FT-IR spectrum of 2',3',8',9'-tetrahydro-1'H,7'H-dispiro[indoline-3,6'-cyclopenta[5,6]pyrano[2,3-g]cyclopenta[b]chromene-12',3''-indoline]-1',2,2'',5',7',11'-hexaone (15S)

Mass spectrum of 2',3',8',9'-tetrahydro-1'H,7'H-dispiro[indoline-3,6'-cyclopenta[5,6]pyrano[2,3-g]cyclopenta[b]chromene-12',3''-indoline]-1',2,2'',5',7',11'-hexaone (15S)

¹HNMR spectrum of 1',3',8',10'-tetramethyldispiro[indoline-3,5'pyrido[3",4":5',6']pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-12',3"-indolin]-2,2',2",4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (16S)

FT-IR spectrum of 1',3',8',10'*-tetramethyldispiro[indoline-3,5'pyrido[3'',4'':5',6']pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-12',3''-indolin]-2,2',2'',4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (16S)*

Mass spectrum of 1',3',8',10'-*tetramethyldispiro[indoline-3,5'pyrido[3'',4'':5',6']pyrano[2',3':6,7]chromeno[2,3-d]pyrimidine-12',3''-indolin]-2,2',2'',4',6',9',11',13'(1'H,3'H,8'H,10'H)-octaone (16S)*