Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

General information and materials

All solvents and starting materials were purchased from commercial sources and used without further purification. Salicylaldehyde was purchased from Energy Chemicals Shanghai China. Deionized water was used throughout the experimental work. The salts used as metal ions sources were AlCl₃·6H₂O, PbCl₂, Hg(OAc)₂, Cd(OAc)₂·2H₂O, LiCl, NaCl, KCl, ZnCl₂, MgCl₂, CaCl₂, CuCl₂, NiCl₂·6H₂O, CoCl₂·6H₂O, FeCl₃·6H₂O, AgNO₃, FeCl₂, CrCl₃, MnCl₂, GaCl₃ and InCl₃. The salts used as anion ions sources were KF, KBr, KClO₄, NH₄CN, KH₂PO₄, KHSO₄, KI, KNO₃, KOAc, KPF₆, K₂SO₄, KCl, K₃PO₄, and AlF₃.

Synthesis and characterization

Methyl 4-(pyridin-4-yl)benzoate: 4-(Pyridin-4-yl)benzoic acid (4.0 g, 20 mmol) was suspended in methanol (200 mL), concentrated sulfuric acid (5 mL) was added at room temperature, and the mixture was heated under reflux for 8 h. After completion of the reaction, the solvent was removed under vacuum, and water (100 mL) was added to the residue to precipitate it. The solid was filtered and further washed with water (50 mL × 3), the obtained solid was dried in air to a stable mass in 96% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.68 (dd, *J* = 4.5, 1.6 Hz, 2H), 8.08 (d, *J* = 8.5 Hz, 2H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.78 (dd, *J* = 4.5, 1.6 Hz, 2H), 3.89 (s, 3H).

4-(Pyridin-4-yl)benzohydrazide (**PBH**): Methyl 4-(pyridin-4-yl)benzoate (2.10 g, 10 mmol) was dissolved in methanol (30 mL), hydrazine hydrate (5 mL) was added at room temperature, and the mixture was heated under reflux overnight. After completion of the reaction, the solvent was removed under vacuum, and water (50 mL) was added to the residue to precipitate it. The solid was filtered and further washed with water (20 mL × 3), the obtained solid was dried in air to a stable mass in 90% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.90 (s, 1H), 8.65 (d, *J* = 5.1 Hz, 2H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 5.1 Hz, 2H), 4.55 (s, 2H).

N'-(2-hydroxybenzylidene)-4-(pyridin-4-yl)benzohydrazide (SPBH): A mixture of PBH (213 mg, 1 mmol) and salicylaldehyde (122 mg, 1 mmol) in 10 mL of ethanol was mixed in a flask and then it was stirred at 50°C for 6 h. When the reaction was completed (checked by TLC), the solvent was removed under vacuum. The solid obtained was suspended and shaken in ether, filtered and further washed with ether. It was recrystallized from *n*-hexane CH_2CI_2 and dried in air to a stable mass. White flaky solid in 80% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.21 (s, 1H), 11.26 (s, 1H), 8.69 (d, *J* = 5.8 Hz, 2H), 8.67 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 2H), 7.99 (d, *J* = 8.2 Hz, 2H), 7.80 (d, *J* = 5.8 Hz, 2H), 7.57 (d, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 6.95–6.88 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.6, 157.9, 150.8, 148.8, 146.4, 140.8, 133.6, 131.9, 129.9, 129.0, 127.5, 121.8, 119.8, 119.1, 116.9. HR-MS (ESI) calcd. for C₁₉H₁₆N₃O₂ [M+1]⁺ m/z 318.1243, found 318.1247.

Fig. S1 UV-vis spectra of SPBH (25 μ M) upon the addition of 75 μ M of the respective metal ions (Ag⁺, Al³⁺, Ca²⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Hg²⁺, K⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺, Fe²⁺, Fe³⁺) in DMF/H₂O (1:1).

Determination of binding constant from Fluorescence titration data:

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

 $1/(F-F_o) = 1/{K_a(F_{max}-F_o)[M^{n+}]} + 1/[F_{max}-F_o]$

 F_o represents the emission enhancement of **SPBH** at 480 nm in the absence of Al³⁺, F_x is the emission intensity of **SPBH** in the presence of a particular concentration of Al³⁺, F_{max} is the emission intensity of **SPBH** at final (maximum) concentration of Al³⁺. K_a is the binding constant of **SPBH**/Al³⁺ interaction and [Mⁿ⁺] is the concentration of Al³⁺. Plot of $(F_{max} - F_x)/(F_x - F_o) vs 1/[Al^{3+}]$ gives a straight line indicating 1:1 complexation between **SPBH** and Al³⁺.

Fig. S2 Determination of association constant of SPBH for Al³⁺ from fluorescent titration data

Calculation of the limit of detection (LOD)

Fig. S3 Plot of emission intensity of titration of **SPBH** (10 μ M) upon the addition of Al³⁺ (0–40 μ M) in DMF/H₂O (1:1), λ_{ex} = 390 nm. Due to the instrumental figure of merit, slope value for 0–10 μ M of Al³⁺ (6.16 × 10⁶) was used for calculation of the detection limit (LOD).

Fig. S4 Job's plot of SPBH/Al³⁺ interaction, changes in emission intensities were measured at 480 nm, λ_{ex} = 380 nm.

Fig. S5 HRMS-ESI spectrum of **SPBH** in the presence of 3 equivalents of AI^{3+} in DMF/H₂O (1:1). Expanding peak at m/z 360.0922.

Fig. S6 Fluorescence intensity plot (at 480 nm) of 10 μ M of **SPBH** and 30 μ M of Al³⁺ in DMF/H₂O (1:1, v/v) mixture at different pH, λ_{ex} = 380 nm.

Fig. S7 Plot of emission intensity of titration of complex of **SPBH** (10 μ M) and Al³⁺ (30 μ M) upon the addition of F⁻ (0–180 μ M) in DMF/H₂O (1:1), λ_{ex} = 390 nm. Slope value for 0–50 μ M of F⁻= –1.549 × 10⁷. Thus using the formula we get the LOD = 1.47 × 10⁻⁶ M.

SPBH/Al ³⁺ :F·=1:2.0	h.M.	
SPBH/AI3+:F-=1:1.0	lutter a	
SPBH/AI ³⁺ :F·=1:0.8	_lull_r_r	
SPBH/AI3+:F-=1:0.6	_\Mm	
SPBH/AI ³⁺ :F-=1:0.4	LUU ~~~	
SPBH/AI ³⁺ :F·=1:0.2	M	
SPBH/AI3+:F-=1:0	M	
12.0 11.5 11.0 10.5 10.0 9.5	9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 f1 (ppm)	5.0 4.5 4.0 3.5 3.0 2.5 2.0 1

Fig. S8 ¹H NMR Spectra of **SPBH**/Al³⁺ complex (bottom) and titration studies with 0-1.2 eq. of F⁻(KF) in DMSO- d_6 .

Fig. S9 Naked eyes color response of a) **SPBH** (0.5 mM), b) **SPBH**/Al³⁺ (1:3) and c) the mixture of sensor and F^- (1:3:3) under 365 nm UV light.

Fig. S10 ¹H NMR Spectra of 1 mM of SPBH (bottom) and SPBH/AIF₃ (1:1) in DMSO-d₆.

Fig. S11 Job's plot of **SPBH**/Al³⁺ with F⁻ interaction, changes in emission intensities were measured at 480 nm, λ_{ex} = 380 nm (ex slit=10 nm; em slit =5 nm).

Fig. S12 ¹H NMR spectrum of methyl 4-(pyridin-4-yl)benzoate in DMSO-d₆ at room temperature

Fig. S14 ¹H NMR spectrum of SPBH in DMSO-*d*₆ at room temperature

Fig. S15 ¹³C NMR spectrum of SPBH in DMSO- d_6 at room temperature.

Fig. S16 HRMS-ESI spectrum of SPBH