Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information for

meta-Bridged Calix[4]arenes with Methylene Moiety Possessing In/Out Stereochemistry of Substituents

Petr Slavík,^a Václav Eigner,^b and Pavel Lhoták*^a

^a Department of Organic Chemistry, University of Chemistry and Technology Prague (UCTP), Technická 6, 166 28 Prague 6, Czech Republic

^b Institute of Physics AS CR v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic.

E-mail: lhotakp@vscht.cz

Table of Contents

Copies of ¹ H, ¹³ C, HRMS and IR spectra	р. 2-21
¹ H NMR titration experiments	p. 22

Copies of ¹H, ¹³C, HRMS and IR spectra

Figure S1. ¹H NMR of compound 4a (CDCl₃, 400 MHz).

Figure S2. ¹³C NMR (APT) of compound 4a (CDCl₃, 100 MHz).

Figure S3. HRMS of compound 4a (ESI⁺).

Figure S4. IR of compound 4a (KBr).

Figure S5. ¹H NMR of compound 4b (CDCl₃, 400 MHz).

Figure S6. ¹³C NMR (APT) of compound 4b (CDCl₃, 100 MHz).

Figure S7. HRMS of compound 4b (ESI⁺).

Figure S8. IR of compound 4b (KBr).

Figure S9. HRMS of mixture of 5a and 5b (ESI⁺).

Figure S11. ¹³C NMR (APT) of compound **6a** (CDCl₃, 125.8 MHz, 323 K).

Figure S12. HRMS of compound 6a (ESI+).

Figure S13. IR of compound 6a (KBr).

Figure S15. ¹³C NMR (APT) of compound 6b (CDCl₃, 100 MHz).

Figure S16. HRMS of compound 6b (ESI⁺).

Figure S17. IR of compound 6b (KBr).

Figure S18. ¹H NMR of mixture of 7a and 7b (CDCl₃, 400 MHz).

Figure S19. ¹³C NMR (APT) of 7a and 7b (CDCl₃, 100 MHz).

Figure S20. HRMS of mixture 7a and 7b (ESI⁺).

Figure S22. ¹³C NMR (APT) of compound 8a (CDCl₃, 100 MHz).

Figure S23. HRMS of compound 8a (ESI+).

Figure S24. IR of compound 8a (KBr).

Figure S25. ¹H NMR of compound 8b (CDCl₃, 400 MHz).

Figure S26. ¹³C NMR (APT) of compound 8b (CDCl₃, 100 MHz).

Figure S27. HRMS of compound 8b (ESI⁺).

Figure S28. IR of compound 8b (KBr).

Figure S30. ¹³C NMR (APT) of compound 9 (CDCl₃, 100 MHz).

Figure S31. HRMS of compound 9 (ESI⁺).

Figure S32. IR of compound 9 (KBr).

Figure S34. HRMS of mixture of 10 (ESI⁺).

Figure S36. ¹³C NMR (APT) of compound 11 (CDCl₃, 100 MHz).

Figure S37. HRMS of compound 11 (ESI⁺).

Figure S38. IR of compound 11 (KBr).

¹H NMR titration experiments

In the experiment a specified amount of *N*-methylpyridinium iodide was dissolved in specified amount of solvent ($C_2D_2Cl_4$). One half of the sample was put in NMR tube and to the rest was added specified amount of calixarene **8a** or **8b**. The aliquots of calixarene **8a** or **8b** were gradually added to NMR tube to achieve different calixarene/guest rations (1:0-7), ensuring a constant guest concentration during the whole experiment. The complexation constants were determined by analysing CIS of protons in position 2 of the host molecule. The values of the complexation constants were determined by analysing the binding isotherms for the 1:1 stoichiometry (using the online application Bindfit).

