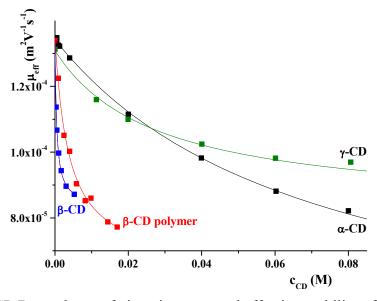
Electronic Supplementary Material (ESI) for New Journal of Chemistry.


This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Selective Binding of Methotrexate to Monomeric, Dimeric and Polymeric Cyclodextrins

Iliya Kritskiy^a, Roman Kumeev^a, Tatyana Volkova^a, Dmitry Shipilov^b, Natalya Kutyasheva^b, Mikhail Grachev^b, Irina Terekhova^{a,*}

1. Determination of the stability constants of MTX/CD complexes from the capillary electrophoresis data.

Figure 1SI. Dependence of viscosity-corrected effective mobility of MTX on CD concentration (pH 2.2, 298.15 K).

Dependences of the viscosity-corrected effective mobility of MTX on CD concentration were used for calculation of the stability constants of CD/MTX complexes. The 1:1 equilibrium of complex formation is described by the following equation:

$$CD + MTX = CD / MTX$$

$$K = \frac{[CD / MTX]}{[CD] \cdot [MTX]}$$
 (1SI)

The effective MTX mobility is expressed as

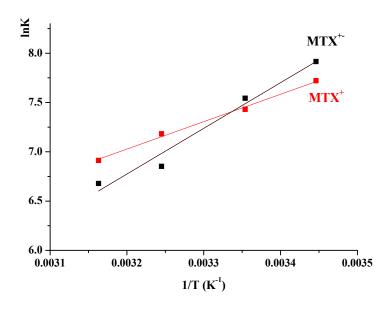
^a G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia

^b Institute of Biology and Chemistry of Moscow State University of Education, 129164 Moscow, Russia

$$\mu_{eff} = \alpha_{MTX} \cdot \mu_{MTX} + \alpha_{CD/MTX} \cdot \mu_{CD/MTX}$$
 (2SI)

where α_{MTX} and $\alpha_{CD/MTX}$ are the fractions of free MTX and CD/MTX complexes, respectively; μ_{MTX} and $\mu_{CD/MTX}$ are the mobilities of free MTX and CD/MTX complexes, respectively. The total concentration of MTX (C_{MTX}) can be written as follows:

$$C_{MTX} = [MTX] + [CD/MTX]$$
(3SI)


where [MTX] and [CD/MTX] are the concentrations of free MTX and CD/MTX complexes, respectively.

The mathematical combination of Eqs. 1SI-3SI gives the equation for the observed MTX mobility:

$$\mu_{eff} = \frac{\mu_{MTX} + \mu_{CD/MTX} \cdot K \cdot [CD]}{1 + K \cdot [CD]}$$
(4SI)

The values of K were calculated according to equation (4SI) by non-linear least-squares regression analysis.

2. Determination of the thermodynamic parameters of complex formation.

Figure 2SI. Van 't Hoff plots for complex formation of cationic (MTX⁺) and zwitterionic (MTX[±]) forms of MTX with β -CD in buffer pH 2.2.

Thermodynamic parameters of complex formation such as the enthalpy and entropy changes were calculated from the relationship according to the van't Hoff equation:

$$\ln K = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \tag{5SI}$$

where ΔH and ΔS are the enthalpy and entropy of complex formation, respectively; T is the temperature; R is the gas constant. Values of ΔH and ΔS can be easily obtained from van 't Hoff plots.