Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Dual Responsive Salen-type Schiff Bases for the Effective Detection of L-Arginine *via* **Static Quenching Mechanism.**

Nithya Mohan, ^a S. S. Sreejith, ^a P. M. Sabura Begum ^a and M.R. Prathapachandra Kurup* ^{a,b}

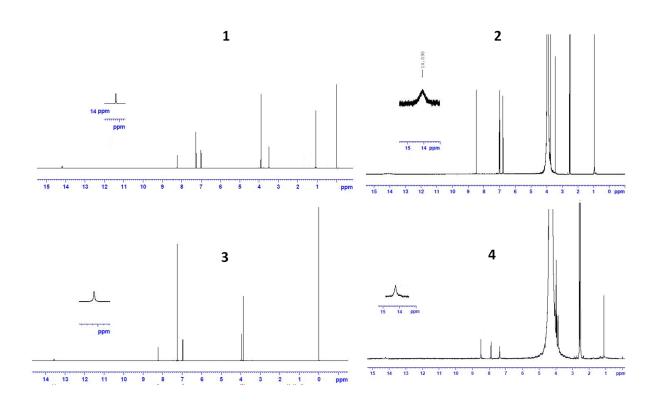


Figure S1. ¹H NMR spectra of sensors 1 to 4.

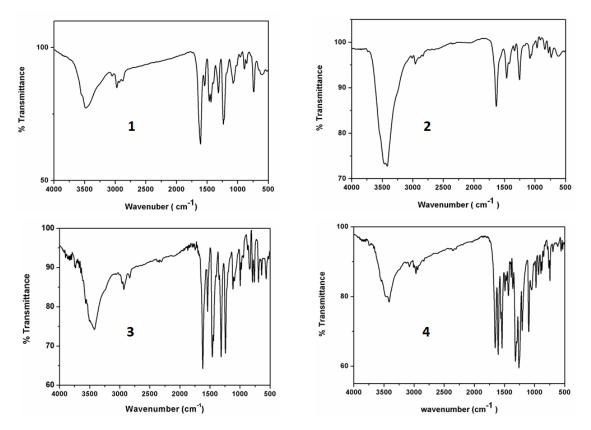
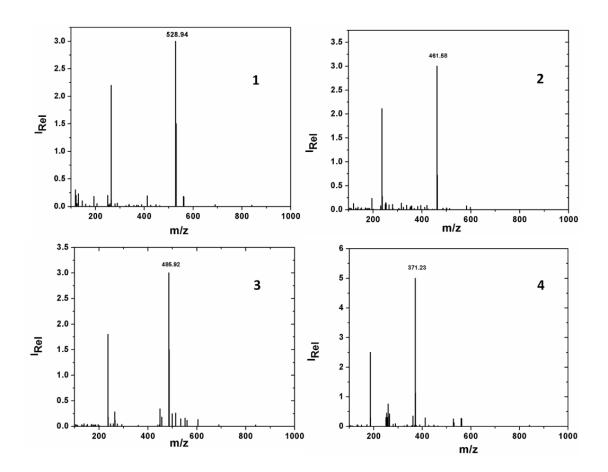
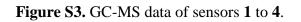




Figure S2. FT-IR spectra of sensors 1 to 4.

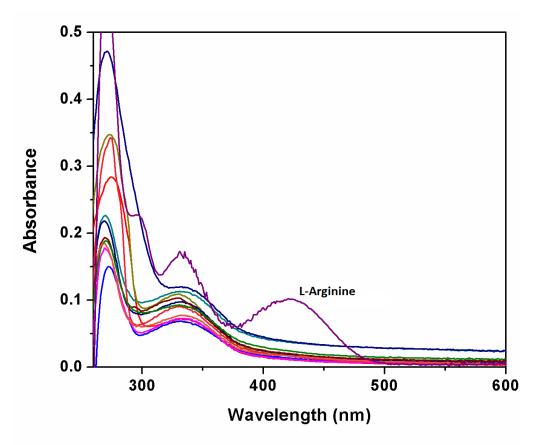


Figure S4. Absorption spectra of sensor 1 with five equivalents of various amino acids.

Table S1

Crystal data and structural refinement parameters of 2.

Compound	2
Empirical formula	$C_{21}H_{26}N_2O_4$
Formula weight	370.44
Color	Yellow
Crystal system	Monoclinic
Space group	$P2_1/n$
Cell parameters	1 21/11
a (Å)	15.1698(10)
b (Å)	6.9547(4)
c (Å)	19.5022(12)
α (°)	90
β (°)	93.802(3)
γ (°)	90 2052 0(2)
Volume V ($Å^3$)	2053.0(2)
	4
Calculated density (p) (Mg m ⁻³)	1.198
Absorption coefficient, μ (mm ⁻¹)	0.083
F(000)	792
Crystal size mm ³	0.30 x 0.20 x 0.20
$\theta(\circ)$ range for data collection	2.69 to 28.35
Limiting indices	-20≤h≤20,
5	-9≤k≤9,
	-26 <u>≤</u> 1 <u>≤</u> 24
Reflections collected	24051
Unique Reflections (R _{int})	5084(0.0485)
Absorption correction	Semi-empirical
	from equivalents
Maximum and minimum	-
transmission	0.995 and 0.982
Refinement method	Full-matrix least-
itermenten method	squares on F^2
Data / restraints /	
parameters	5084/ 3 / 245
Goodness-of-fit on F ²	0.879
Final R indices $[I > 2\sigma]$	$R_1 = 0.0604,$
(I)] (I)]	$WR_2 = 0.1659$
R indices (all data)	$R_1 = 0.1547,$
r multes (an uala)	$R_1 = 0.1347,$ $WR_2 = 0.2384$
Largest difference peak	$WIX_2 = 0.2304$
and hole (e $Å^{-3}$)	0.264 and -0.206
	1

Table S2

Hydrogen bonding interactions					
D–H···A	D–H (Å)	$H \cdots A(A)$	$D \cdots A(A)$	$\angle D - H \cdots A(^{\circ})$	
$O(2)-H(2)\cdots N(1)^{a}$	0.82	1.86	2.59	147	
$O(3) - H(3) \cdots N(2)^{a}$	0.82	1.87	2.59	147	
$C(11)$ - $H(11A)$ ···· $N(2)^b$	0.96	2.58	2.90	115	
Equivalent position codes : $a = 1/2-x$, $-1/2+y$, $1/2-z$; $b = -1+x$, $-1+y$, z.					
D, Donor; A, acceptor.					

Intramolecular hydrogen bonding interactions in 2.

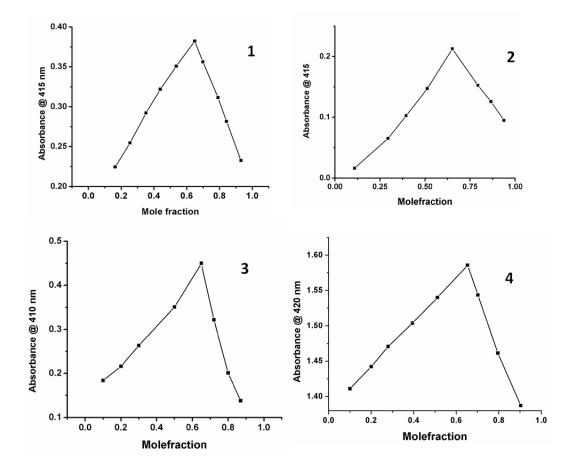


Figure S5. Jobs plot of sensors 1 to 4 showing 1:2 complex formation between the sensor and the analyte.

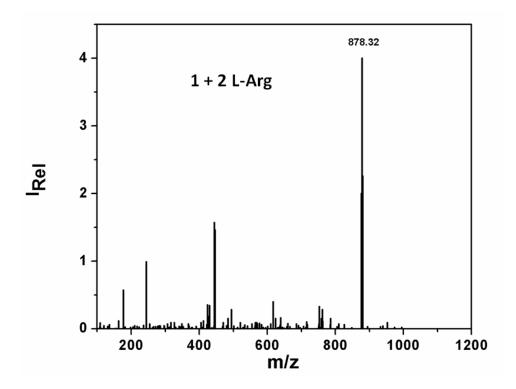


Figure S6. Mass spectrum of 1 + 2 L-Arginine.

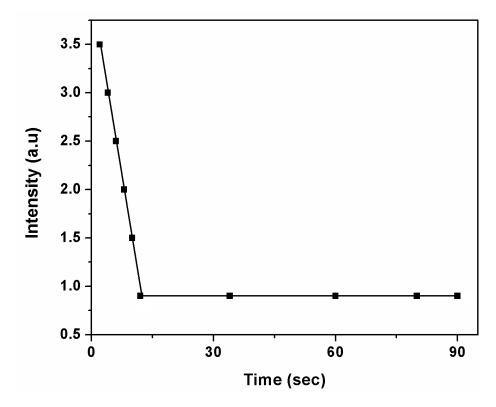


Figure S7. Fluorometric response time of the sensor 4 towards L-Arginine.

Table S3

Compounds	Average Lifetime (ns)		
Sensor 1	1.40		
Sensor 1 + L-Ar	1.52		
Sensor 2	0.95		
Sensor 2 + L-Ar	0.91		
Sensor 3	0.62		
Sensor 3 + L-Ar	0.68		
Sensor 4	1.25		
Sensor 4 + L-Ar	1.49		

Life time of sensors with and without analyte showing static quenching.

Table S3

 K_{SV} values as obtained from Stern-Volmer plots and quantum yield measurements against standard quinine sulphate for 1-4.

Sensor	1	2	3	4
K _{SV} (10 ⁴)	11.43	6.42	6.89	13.85
Φ	0.107	0.274	0.110	0.386

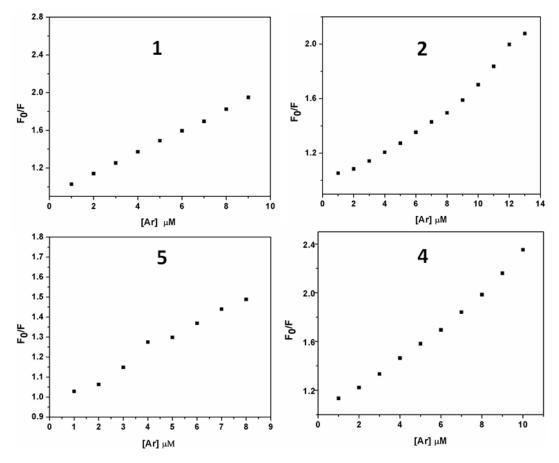


Figure S8. Stern-Volmer plots for sensors 1 to 4.

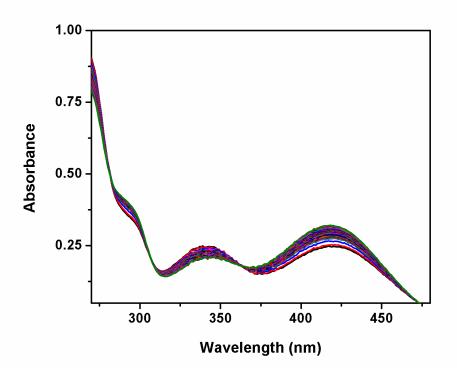


Figure S9. Absorption titration of 1 with guanidine.

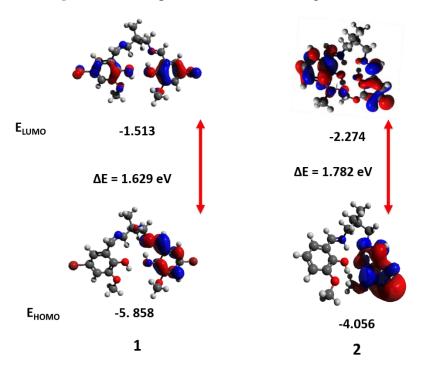


Figure S10. HOMO-LUMO plots of DFT optimized structures of 1 and 2 with the associated energy gaps.

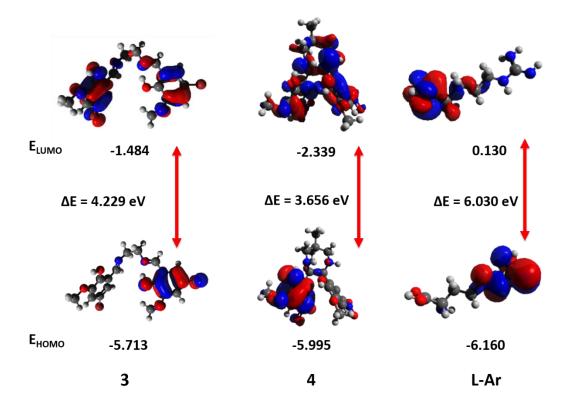


Figure S11. HOMO-LUMO plots of DFT optimized structures of 3, 4 and L-Ar with the associated energy gaps.

Frontier orbital compositional analysis

Frontier orbital calculations were performed using Mulliken method as employed in multiwfn program version 3.3.9.¹ In the case of **1**, HOMO is on one of the benzene rings 73.15% with a little contribution from the azomethine group of the same side (19.13%). But the LUMO is evenly distributed among the two sides with phenolic groups having the highest contribution of about 86.65%. For **2**, HOMO is on the benzene ring of one side with a contribution of about 79.37% and on the methoxy oxygen group (15.44%). In the case of **3**, the trend is similar with the HOMO being concentrated on one of the benzene ring (75.68%) and azomethine nitrogen atom (19.15%) and the LUMO on phenolic moieties (82.27%) on either side with a slight contribution form bromine atoms (9.19%). In **4**, HOMO is mainly concentrated on of the benzene rings with a cumulative contribution of about 76.58%. In the case of L-Arginine, the HOMO is concentrated on the nitrogen atoms of the amine side with a cumulative contribution of about 76.58%. In the case of L-Arginine, the HOMO is concentrated on the nitrogen atoms of the amine side with a cumulative contribution of about 76.58%. In the case of L-Arginine, the HOMO is concentrated on the nitrogen atoms of the amine side with a cumulative contribution of about 76.58%. In the case of L-Arginine, the HOMO is concentrated on the nitrogen atoms of the amine side with a cumulative contribution of about 76.58%. In the case of L-Arginine, the HOMO is concentrated on the nitrogen atoms of the amine side with a cumulative contribution of about 79.10%.

Reference

1. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580-592.