Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Sulfonic acid-Functionalized Organic Knitted Porous Polyaromatic Microspheres as

Heterogeneous Catalysts for Biodiesel Production

Anuraj Varyambath, Mi-Ra Kim, and Il Kim*

BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and

Engineering, Pusan National University, Busan 609-735, Republic of Korea

*Corresponding author: ilkim@pusan.ac.kr

Name of the catalyst	S_{BET}	V _{micro}	Pore diameter (nm)
	(m^{2}/g)	(cm^{3}/g)	
OPP-1	595	0.5247	0.86
OPP-2	520	0.5024	0.72
OPP-3	458	0.4982	0.80

Table S1 The physical properties of Organic Knitted Porous Polymers

Fig. S1. FTIR spectra of OPP-2 (a) and OPP-3 (b), and their functionalized products.

Fig. S2. TGA curves of OPPSO₃H-2 and OPPSO₃H-3.

Fig. S3. FESEM images of OPPSO₃H-2 (a) and OPPSO₃H-3 (b).

Fig. S4. XRD patterns of OPPs and OPPSO₃Hs.

Fig. S5. N₂ adsorption/desorption isotherm and corresponding pore size distribution curves (shown in inset) calculated from NLDFT method of OPPSO₃H-2 (a) and OPPSO₃H-3(b).

Fig. S6. Wide scan XPS spectra of OPPSO₃H-2 (a) and , OPPSO₃H-3 (b).

Fig. S7. FESEM images of OPPSO₃H-1 (a) OPPSO₃H-2 (b) and OPPSO₃H-3 (c) after catalytic reactions.

Fig. S8. ¹H and ¹³ C NMR spectra of methyl laurate obtained by esterification using OPPSO₃H-1.

Fig. S9. ¹H and ¹³ C NMR spectra of methyl myristate obtained by esterification using OPPSO₃H-1.

Fig. S10. ¹H and ¹³ C NMR spectra of methyl palmitate obtained by esterification using OPPSO₃H-1.

Fig. S11. ¹H and ¹³ C NMR spectra of methyl stearate obtained by esterification using OPPSO₃H-1.

Fig. S12. ¹H and ¹³ C NMR spectra of methyl oleate obtained by esterification using OPPSO₃H-1.

Fig. S13. ¹H and ¹³ C NMR spectra of dimethyl succinate obtained by esterification using OPPSO₃H-1.

Fig. S14. ¹H and ¹³ C NMR spectra of dimethyl glutarate obtained by esterification using OPPSO₃H-1.

Fig. S15. ¹H and ¹³ C NMR spectra of dimethyl adipate obtained by esterification using OPPSO₃H-1.

Fig. S16. ¹H and ¹³ C NMR spectra of soybean oil ester obtained by transesterification using OPPSO₃H-1.

Fig. S17. ¹H and ¹³ C NMR spectra of linseed oil ester obtained by transesterification using OPPSO₃H-1.

Fig. S18. ¹H and ¹³ C NMR spectra of canola oil ester obtained by transesterification using OPPSO₃H-1.

Fig. S19. ¹H and ¹³ C NMR spectra of castor oil ester obtained by transesterification using OPPSO₃H-1.

Fig. S20. ¹H and ¹³ C NMR spectra of palm oil ester obtained by transesterification using OPPSO₃H-1.

Fig. S21. ¹H and ¹³ C NMR spectra of olive oil ester obtained by transesterification using OPPSO₃H-1.