ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTROCHEMICAL SYNTHESIS AND *IN-VITRO* CYTOTOXICITY STUDY OF COPPER(II) CARBOXYLATE WITH DIFFERENT FATTY ACIDS ALKYL CHAIN LENGTH

Norazzizi Nordin^{a*}, Badrul Hisham Yahaya^b, and Muhammad Rahimi Yusop^c

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.

^bRegenerative Medicine Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia.

^cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Corresponding author: azzizi@usm.my

Table S1. IC_{50} values obtained from previous studies for the treatment of Cu(II) complexes with different active ligands on A549 and HeLa cells.

Defense	IC ₅₀ value (µM)				
Reference	A549	HeLa			
1	188.0	-			
2	85.0	-			
3	42.8-208.0	25.5-65.1			
4	0.4-0.9	1.7-1.9			
5	10.0-12.5	1.7-2.5			
6	-	15.0			
7	-	2.8			

Table S2Percentage of yield and energy consumption for the optimization of electrolysisconditions during the synthesis of CuLa2 and CuSt2.

Compound	Parameter	Variable	Percentage yield	Energy consumption	
			(%)	(WhL^{-1})	
CuLa ₂		NaCl	6.50 ± 0.28	3.30 ± 0.03	
		KNO ₃	15.23 ± 0.57	4.20 ± 0.08	

Type of	NH ₄ Cl	19.61 ± 0.50	4.34 ± 0.04
supporting electrolytes	CH ₃ COONH ₄	28.52 ± 0.29	4.82 ± 0.09
	1	28.52 ± 0.29	4.82 ± 0.09
	2	44.13 ± 0.37	12.60 ± 0.16
Electrolysis	3	78.04 ± 0.28	16.66 ± 0.06
	4	99.69 ± 0.31	20.07 ± 0.07
	5	100.00 ± 0.40	24.69 ± 0.09
	1	14.44 ± 0.43	0.18 ± 0.04
	5	43.90 ± 0.46	5.06 ± 0.05
Applied voltage (V)	10	99.69 ± 0.31	20.07 ± 0.07
voltage (V)	15	100.00 ± 0.17	47.70 ± 0.11
	20	100.00 ± 0.34	84.29 ± 0.13
	0.01	12.32 ± 0.60	3.33 ± 0.42
	0.1	99.69 ± 0.31	20.07 ± 0.07
concentration	0.5	98.71 ± 1.33	71.21 ± 0.14
$(\text{mol } L^{-1})$	1.0	100.00 ± 0.69	130.70 ± 0.57
	2.0	100.00 ± 1.06	168.51 ± 0.52
Type of supporting electrolytes	NaCl	7.17 ± 0.12	3.31 ± 0.04
	KNO ₃	16.82 ± 0.25	4.31 ± 0.05
	NH ₄ Cl	19.52 ± 0.29	4.52 ± 0.08
	CH ₃ COONH ₄	29.21 ± 0.23	5.02 ± 0.06
	1	29.21 ± 0.23	5.02 ± 0.06
	2	45.14 ± 0.31	10.61 ± 0.09
Electrolysis time (h)	3	79.57 ± 0.66	15.27 ± 0.03
	4	99.21 ± 0.33	21.01 ± 0.04
	5	99.80 ± 0.20	25.18 ± 0.07

 $CuSt_2$

Fig. S1 (a) FTIR spectra for CuLa₂, CuSt₂, HLa dan HSt; (b) UV-Vis spectra CuLa₂ and CuSt₂ and free HLa in DMSO solvent at room temperature. (c) paddlewheel dimer structure of Cu(II) carboxylate (R = carbon chain of fatty acid).

Fig. S2 (a) Wide scan; (b) C 1s; (c) O 1s; (d) Cu 2p narrow scan of CuLa₂ XPS spectra.

Table S3.Binding energy for C 1s, O 1s and Cu 2p narrow scan of CuLa2 and CuSt2 XPSspectra.

	Binding energy (eV)								
Compound	C 1s			O 1s		Cu 2p			
	СОО -С-О	$C \cap$	-C-C-	0-C	O=C-	O-C u	Cu	Cu	Satellite
		-C-O			Ο		2p _{3/2}	2p 1/2	signal
CuLa ₂									939.1
	288.3 285.4	285.4	284.5	532.9	531.5	530.6	934.1	953.9	and
									943.5
CuSt ₂	288.1 285.5		284.5	532.7	531.5	530.0	934.0	953.8	939.0
		285.5							and
								943.3	

Fig. S3 XRD diffractogram of (a) CuO and Cu byproducts; (b) CuLa₂ and CuSt₂.

REFERENCES

- 1. J. Nagaj, P. Kolkowska, A. Bykowska, U. K. Komarnicka, A. Kyziol and M. Jezowska-Bojczuk, *Med. Chem. Res.* 24, 115 (2015).
- 2. Z. Boulsourani, G. D. Geromichalos, K. Repana, E. Yiannaki, V. Psycharis, C. P. Raptopoulou, D. Hadjipavlou-Litina, E. Pontiki and C. Dendrinou-Samara, *J. Inorg. Biochem.* **105**, 839 (2011).
- 3. F. Bacher, O. Domotor, A. Chugunova, N. V. Nagy, L. Filipovic, S. Radulovic, E. A. Enyedy and V. B. Arion, *Dalton Trans.* 44, 9071 (2015).
- 4. J. Lu, Q. Sun, J. L. Li, L. Jiang, W. Gu, X. Liu, J. L. Tian and S. P. Yan, J. Inorg. Biochem. 137, 46 (2014).
- 5. C. H. Ng, S. M. Kong, Y. L. Tiong, M. J. Maah, N. Sukram, M. Ahmad and A. S. B Khoo, *Metallomics* 6, 892 (2014).
- 6. A. N. Kate, A. A. Kumbhar, A. A. Khan, P. V. Joshi and V. G. Puranik, *Bioconjugate Chem.* 25, 102 (2014).
- 7. X. Y. Qin, L. C. Yang, F. L. Le, Q. Q. Yu, D. D. Sun, Y. N. Liu and J. Liu, Dalton Trans. 42, 14681 (2013).