Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information to:

π-Stacked and Unstacked Aggregates Formation of A Near-infrared Dye Leading to Characteristic Photophysical Properties

Yue Wang,^a Rong Wang,^{a,b} Yoshitane Imai,^d Nobuyuki Hara,^d Xinhua Wan,^b and Tamaki Nakano^{*a,d}

^aInstitute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan. Email: tamaki.nakano@cat.hokudai.ac.jp; Fax: +81-11-7069156; Tel: +81-11-7069155.

^bCollege of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

^cGraduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan.

^dIntegrated Research Consortium on Chemical Sciences (IRCCS), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan.

Contents:

1.	Experimental	.2
2.	Absorbance spectra of DTCI in methanol and H ₂ O	.3
3.	Absorbance spectra of DTCI in methanol containing water: Determination of concentration of	of
	water solutions	.4
4.	Fluorescence and excitation spectra of DTCI in methanol and in water measured through	
	front-face illumination	.5
5.	Temperature effects on absorbance spectra in MeOH	_6
6.	Temperature effects on absorbance spectra in H ₂ O	.7
7.	Temperature effects on NMR spectra	8

1. Experimental

Materials and mixture samples preparation

3,3'-Diethylthiatricarbocyanine iodide (DTCI) and methanol (Wako Chem.) were used as purchased. DTCI solutions in methanol at $[DTCI] = 4.0 \times 10^{-4} \text{ M}$ and $1.0 \times 10^{-4} \text{ M}$ were prepared by dissolving 5.45 mg of DTCI (10.00 mmol) in 25 mL and 100 mL of a solvent, and those at $[DTCI] = 4.0 \times 10^{-5}$ M, 1.0×10^{-5} M, 4.0×10^{-6} M and 1.0×10^{-6} M were prepared by diluting the 4.0×10^{-4} M and 1.0×10^{-4} M samples.

Aqueous solution samples of DTCI were prepared by adding DTCI to deionized water at the apparent ratios of 0.1 g/L, 0.5 g/L, 1 g/L, and 2 g/L, rigorously stirring the mixtures for 1 h to facilitate dissolution, and standing them for 30 min; the supernatant liquid part was used for measurements. Because DTCI was only partially soluble in water, accurate concentrations of DTCI in water were determined by dissolving 50 μ L for the supernatant solutions made at 0.5 g/L, and 1 g/L, and 2 g/L or 300 μ L of the supernatant solution made at 0.1 g/L in 1 mL of MeOH and measuring absorbance spectra of the resulting solution whose methanol content was 95 volume % or 77 volume %. Molar absorptivities of DTCI at 758 nm in pure MeOH follow: $\varepsilon = 367000$ at 1.0 x 10⁻⁶ M [absorbance 0.037], 330000 at 4.0 x 10⁻⁶ M [absorbance 0.132], 313160 at 1.0 x 10⁻⁵ M [absorbance 0.313], 283427 at 4.0 x 10⁻⁵ M [absorbance 1.13], and 263220 at 1.0 x 10⁻⁴ M [absorbance 2.63]). Non-linear curve fitting led the following equation:

 $[DTCI] = 3.509 \text{ x } 10^{-5} \text{ x} (Absorbance at 758 \text{ nm})^{1.083}$

On the basis of this equation and absorbance values red from Figure S2 along with the dilution ratios led to the concentrations: $[DTCI] = 7.2 \times 10^{-5} \text{ M}$ for 0.1 g/L, 2.0 x 10⁻⁴ M for 0.5 g/L, 4.8 x 10⁻⁴ M for 1 g/L, and 8.8 x 10⁻⁴ M for 2 g/L.

Instrumentation

Circular dichroism (CD) spectra were taken with a JASCO-820 spectrometer. UV-vis absorption spectra were measured with a JASCO V-570 spectrophotometer. Emission spectra were taken on a JASCO FP-8500 fluorescence spectrophotometer.

2. Absorbance Spectra of DTCI in methanol-

Figure S1. Absorbance spectra of DTCI in methanol at $1.0 \ge 10^{-6}$ M (A), $4.0 \ge 10^{-6}$ M (B), $1.0 \ge 10^{-5}$ M (C), $4.0 \ge 10^{-5}$ M (D), and $1.0 \ge 10^{-4}$ M (D) [room temperature, 1-mm cell].

3. Absorbance Spectra of DTCI in methanol containing water

Figure S2. Absorbance spectra of DTCI in methanol containing water. The samples were prepared by dissolving supernatant water solution prepared at a ratio of DTCI and water of 0.1 g/L (A), 0.5 g/L (B), 1 g/L (C), and 2 g/L (D) [room temperature, 1-mm cell]. See Experimental text for further details.

4. Fluorescence and excitation spectra of DTCI in methanol and in water measured through front-face illumination in a triangular cell or a in a square cell set diagonally to the incident light beam

Figure S3. Emission (blue) and excitation (red and green) spectra of DTCI in methanol (A) and in water (B) measured through front-face illumination: [DTCI] $a = 1.0 \times 10^{-6}$ M (a), 4.0×10^{-6} M (b), 1.0×10^{-5} M (c), 4.0×10^{-5} M (d), 1.0×10^{-4} M (e), and 4.0×10^{-4} M (f) in A and 7.2×10^{-5} M (a), 2.0×10^{-4} M (b), 4.8×10^{-4} M (c), and 8.8×10^{-4} M (d) in B. Excitation wavelengths for fluorescence emission spectra (λ_{ex}) and monitoring wavelengths for excitation spectra (λ_{em}) are indicated above relevant spectra [room temperature, 10-mm cell].

5. Temperature effects on absorbance spectra in MeOH

Figure S4. Absorbance spectra of DTCI in methanol at $[DTCI] = 1.0 \times 10^{-6} M$ (A) and 4.0 x $10^{-5} M$ (B) measured at different temperatures and relations between absorbance at 758 nm and temperature at 1.0 x $10^{-6} M$ (C) and 4.0 x $10^{-5} M$ (D).

6. Temperature effects on absorbance spectra in H_2O

Figure S5. Absorbance spectra of DTCI in methanol at $[DTCI] = 7.2 \times 10^{-5} \text{ M}$ (A) and 8.8 x 10^{-4} M (B) measured at different temperatures and relations of absorbances at 580 nm, 650 nm, and 750 nm and temperature at 7.2 x 10^{-5} M (C) and 8.8 x 10^{-4} M (D).

7. Temperature effects on NMR spectra

Figure S6. ¹H NMR spectra of DTCI taken at different temperatures in CD₃OD at $[DTCI] = 4.0 \times 10^{-4} M$.

Figure S7. ¹H NMR spectra of DTCI taken at different temperatures in D_2O at $[DTCI] = 8.8 \times 10^{-4} M$.