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1. Experimental 

1.1 Preparation of photocatalysts 

1.1.1 Chemicals and reagents 

All reagents including triethanolamine (TEOA), Eosin Y (EY), H2PtCl6·6H2O and 

urea were of analytical grade and used without further purification. The deionized 

water was used throughout experiments. 

1.1.2 Preparation of g-C3N4 

The g-C3N4 was synthesized by pyrolyzing urea in an alumina crucible with a cover 

at 550 °C (ramp rate, 4 °C min-1) for 2 h. The obtained product was washed with 

water and ethanol several times, and dried in vacuum oven at 60 °C overnight. 

1.1.3 Preparation of Pt-CN 

500 mg of g-C3N4 was dispersed into 150 mL of deionized water with 

ultrasonication for 30 min and then kept stirring for 5 min. After that, H2PtCl6·6H2O  

solution (4 mg mL-1) was added into above g-C3N4 aqueous dispersion and the 

resulting mixture was heated at 70 °C in an oil bath for 1-10 h. Then the resulting 

Pt-CN product was filtered and washed with water and ethanol several times, and 

dried at 60 °C in vacuum oven overnight, followed by annealing at 125 °C for 1 h in 

N2 atmosphere. The Pt loading measured by inductively coupled plasma-optical 

emission spectrometry (ICP-OES) for samples obtained with reaction time of 1, 2, 4, 

and 10 h was determined to be 0.17, 0.74, 1.22, and 1.70 wt%, respectively. The 

thus-obtained samples were labelled as x% Pt-CN, where x represents the Pt loading 

amount. 

1.1.4 Preparation of Pt NPs-CN 

The Pt NPs-CN was synthesized by photoreduction of H2PtCl6 ·6H2O (4 mg mL-1) 

from 10 vol% TEOA solution (pH 7) containing g-C3N4 via illumination by 300 W Xe 

lamp (CEL-HXF300) with a cut-off filter of 420 nm for 6 h. The Pt loading for Pt 

NPs-CN was measured to be 2.88 wt% by ICP-OES. The obtained sample was 

labelled as 2.88% Pt NPs-CN. 

1.2 Characterizations 

The high-angle annular dark-field scanning transmission electron microscopy 
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(HAADF-STEM) characterization was performed on a FEI Titan TEM/STEM with a 

spherical aberration corrector. X-ray diffraction (XRD) patterns were obtained with a 

Rigaku Smartlab diffractometer with a nickel filtrated Cu Kβ radiation. X-ray 

photoelectron spectroscopy (XPS) measurements of the samples were performed on a 

K-Alpha surface analysis (Thermo Scientific Escalab-250Xi) using X-ray 

monochromatization. Fourier transform infrared spectroscopy (FT-IR) spectrum was 

obtained with a Thermo Nicolet Avatar 380 FT-IR spectrometer. The loading amount 

of Pt was measured by an inductively coupled plasma-optical emission spectrometry 

(ICP-OES) (Varian 710-ES). The specific surface area was determined with the 

Brunauer-Emmett-Teller (BET) equation at 77 K by using an adsorption apparatus 

(Micromeritics ASAP 2020 HD88). UV–vis diffuse reflectance spectra were recorded 

on a Shimadzu UV-3600 UV–vis-near-IR spectrophotometer equipped with an 

integrating sphere and BaSO4 powders were used as a reflectance standard. UV–vis 

absorption spectra were taken with a Thermo Scientific–Evolution 220 

spectrophotometer. The photoluminescence (PL) spectra were determined by a Horiba 

Scientific FluoroMax-4 spectrofluorometer. 

1.3 Photocatalytic hydrogen evolution reaction 

The EY sensitized photocatalytic H2 evolution experiments were performed in a 

280 mL quartz reactor with a top flat quartz window for light irradiation and a silicone 

rubber septum was fixed on its side for sampling produced H2 in the headspace of 

reaction cell. The 10 vol% TEOA (pH 7) was used as the sacrificial electron donor. In 

a typical procedure, 10 mg of as-prepared Pt-CN or Pt NPs-CN photocatalyst was 

dispersed into 100 mL of TEOA solution by ultrasonication for 5 min followed by 

addition of 0.4 mM EY as the photosensitizer. The reaction mixture was then 

thoroughly degassed by repeated evacuation-N2 filling process and irradiated with a 

30-W LED lamp (λ=520 nm). The H2 gas produced was manually taken out by a 

gas-tight syringe (Agilent, 1.0 mL) and analyzed at given time intervals with a 

precalibrated gas chromatography (Tech comp; GC-7900) with a thermal conductivity 

detector, a 5 Å molecular sieve column (4 mm×5 m), and with N2 as carrying gas. 

The apparent quantum efficiency (AQE) of H2 evolution was calculated from the 
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ratio of the number of reacted electrons during H2 evolution to the number of incident 

photons. The photon flux of incident light was determined using a Ray virtual 

radiation actinometer (Apogee MQ-500, silicon ray detector, light spectrum, 389–692 

nm; measurement range, 0–4000 μmol·m-2·s-1). 

2. Additional discussion and figures 

2.1 Additional discussion 

In aqueous solution, a sequential hydrolysis of PtCl6
2- ions may occur, giving rise to 

a series of hydrolytic species as shown in the following equations (1)~(6):S1 
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On the basis of above hydrolysis mechanism of PtCl6
2-, it is obvious that a higher 

pH value will lead to hydrolytic products with more chloride anions dissociated. 

Given that the pH value of the g-C3N4 dispersion in this study is about X (measured 

by a pH meter), it is reasonable that a series of Pt species containing fewer chloride 

ions such as Pt(OH)2Cl4
2-, Pt(OH)3Cl3

2-, Pt(OH)4Cl2
2-, Pt(OH)5Cl2-, and Pt(OH)6

2- will 

form during the reflux reaction (70 oC) of dispersed g-C3N4 nanosheets with H2PtCl6. 

In fact, the dissociation of Cl- from PtCl4
2- ions due to the ion exchange with OH- 

could be detected by adding AgNO3 to the mixture of H2PtCl6 and g-C3N4 aqueous 

dispersions after reflux reaction. In the following heat-treatment at 125 oC in N2, the 

dehydration and further dechlorination of the anchored Pt species would be expected 

to occur and the single Pt atoms formed within the g-C3N4 matrix, as evidenced in our 

paper and in the literature.S2 

2.2 Additional figures 
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Fig. S1 The size distribution of Pt nanoparticles in Pt NPs-CN sample. 

 

Fig. S2 HAADF-STEM image Pt NPs-CN photocatalyst. The single Pt atoms were 

marked by white cycles. 
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Fig.S3 XRD patterns of Pt-CN with higher Pt loadings of 1.22% and 1.70%. 
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Fig.S4 FTIR spectra of g-C3N4, Pt-CN, and Pt NPs-CN photocatalysts. 
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Fig. S5 Photoluminescent spectra of g-C3N4, Pt-CN, and Pt NPs-CN samples. The excitation 

wavelength is 380 nm. 
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Fig. S6 UV-vis diffuse reflectance spectra of the Pt-CN and Pt NPs-CN catalysts. 
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Fig. S7 UV-vis absorption spectra of reaction solution containing EY, g-C3N4, 

EY-g-C3N4, EY-Pt-CN, and EY-Pt NPs-CN. EY, 10 μM; g-C3N4, Pt-CN, or Pt 

NPs-CN, 100 μg mL-1.  

Table S1 The comparison of photocatalytic H2 evolution in different photocatalytic 

systems composed of EY or ErB as photosensitizer, g-C3N4 as Pt loading matrix, and Pt 

as H2 evolution cocatalyst. 

Photocatalyst Reaction conditions Light source 

H2 evolution 

rate (μmol h-1 

mgPt
-1) 

Ref. 

EY-mpg-C3N4/Pt 

EY, 0.4 mM; mpg-C3N4/Pt, 

30 mg; Pt, 7 wt.%; TEOA 

(15 vol.%, pH 7) 

250-W high 

pressure Hg 

lamp, >420 nm 

371.7  S3 

EY-g-C3N4/Pt 

EY, 12.5 μM; g-C3N4/Pt, 

100 mg; Pt, 7 wt.%; TEOA 

(0.79 M, pH 7) 

400-W high 

pressure Hg 

lamp, >420 nm 

22.8 S4 

ErB-g-C3N4/Pt 

ErB, 2.27 mM; g-C3N4/Pt, 

100 mg; Pt, 1.25 wt.%; 

TEOA (5 vol.%, pH 9) 

300-W Xe lamp, 

>420 nm 
522.0 S5 

EY-g-C3N4 NS/Pt 

EY, 2.27 mM; g-C3N4/Pt, 30 

mg; Pt, 1.0 wt.%; TEOA (10 

vol.%, pH 8) 

300-W Xe lamp, 

>420 nm 
943.0 S6 

EY-g-C3N4/Pt 

EY, 0.72 mM; g-C3N4/Pt, 50 

mg; Pt, 0.5 wt.%; TEOA (20 

vol.%, pH 7) 

300-W Xe lamp, 

>420 nm 
362 S7 

EY-0.17%Pt-CN 

EY, 0.4 mM; Pt-CN or Pt 

NPs-CN, 10 mg; TEOA (10 

vol.%, pH 7) 

30-W LED 

520 nm 

283.5 

This 

work 

EY-0.74%Pt-CN 458.1 

EY-1.22%Pt-CN 309.3 

EY-1.70%Pt-CN 225.9 

EY-2.88%Pt 

NPs-CN 
94.9 
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Table S2 Physicochemical properties of g-C3N4, Pt-CN, and Pt NPs-CN samples. 

Sample SBET 

(m2g-1)a 

Average pore size  

(nm)b 

Total pore volume  

(cm3 g-1)c 

g-C3N4 83.5 17.7 0.369 

0.17% Pt-CN 64.0 24.2 0.387 

0.74% Pt-CN 72.1 21.2 0.382 

1.22% Pt-CN 87.1 21.2 0.473 

1.70% Pt-CN 101.4 23.5 0.595 

2.88% Pt NPs-CN 83.2 23.1 0.479 
a BET surface area is calculated from the linear part of the BET plot. 
b Adsorption average pore width (4 V/A by BET). 
c Single point total pore volume of the pores at p/p0=0.99. 
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Fig. S8 Surface-specific photocatalytic H2 evolution activity of Pt-CN and Pt NPs-CN 

samples. 
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Fig. S9 UV-vis absorption spectra of EY during the photocatalytic H2 reaction from 

EY sensitized 0.74% Pt-CN under 520 nm irradiation as a funtion of reaction time. 

The 0.74% Pt-CN was removed by centrifiguation and the remaining EY solution was 

diluted 10 times. 
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Fig. S10 FTIR spectra of 0.74% Pt-CN before and after reaction. 
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Fig. S11 XRD patterns of 0.74% Pt-CN before and after reaction. 
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Fig. S12 HAADF-STEM image of 0.74% Pt-CN after reaction. 
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Fig. S13 High-resolution XPS spectra of Pt 4f core level of 0.74% Pt-CN before and 

after reaction. 
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