Electronic Supplementary Information

A Novel photosensitizer based on a ruthenium(II) phenanthroline bis(perylenediimide) dyad: synthesis, generation of singlet oxygen and *in vitro* photodynamic therapy

Nuray Esra Aksakal^a, Hasan Hüseyin Kazan^b, Esra Tanrıverdi Eçik^a, Fatma Yuksel^{a*}

^a Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey

^b Department of Biological Sciences, Middle East Technical University, Ankara, Turkey

* Author for correspondence:

Prof. Dr. Fatma Yuksel, Department of Chemistry, Gebze Technical University, P.O.Box: 141, Gebze 41400, Kocaeli, Turkey

Tel: 00 90 262 6053016

Fax: 00 90 262 6053005

e-mail : fatma@gtu.edu.tr

Table of Contents

Fig. S1 MALDI-TOF spectrum of 7
Fig. S2 FT-IR spectrum of 7
Fig. S3 MALDI-TOF spectrum of P64
Fig. S4 FT-IR spectrum of P64
Fig. S5 ¹ H-NMR spectrum of P65
Fig. S6 ¹³ C-NMR spectrum of P65
Fig. S7 MALDI-TOF spectrum of Ru-BP6
Fig. S9 ¹ H-NMR spectrum of Ru-BP6
Fig. S8 FT-IR spectrum of Ru-BP7
Fig. S10 ¹³ C-NMR spectrum of Ru-BP7
Fig. S11 TGA of Ru-BP8
Fig. S12 UV-vis spectra of Ru-BP in DMSO at different concentrations between 2x10 ⁻⁶ M and 10 ⁻⁵ M
Fig. S13 UV-vis spectra of P6 in DMSO at different concentrations between 2x10 ⁻⁶ M and 10 ⁻⁵ M9
Fig. S14 UV-vis spectrum of methylene blue9
Fig. S15 UV-vis spectrum of P610
Fig. S16 Lifetime spectra of P6 and Ru-BP11
Fig. S17 Absorbance spectrum of Ru-BP for photodegredation study in DMSO using red LED array12

Fig. S2 FT-IR spectrum of 7.

Fig. S3 MALDI-TOF spectrum of P6.

Fig. S4 FT-IR spectrum of P6.

Fig. S8 FT-IR spectrum of Ru-BP.

Fig. S9 ¹H-NMR spectrum of Ru-BP.

Fig. S10 ¹³C-NMR spectrum of Ru-BP.

Fig. S11 Thermogravimetric analysis (TGA) of Ru-BP.

Fig. S12 UV-vis spectra of Ru-BP in DMSO at different concentrations between 2x10⁻⁶ M and

10⁻⁵ M.

Fig. S13 UV-vis spectra of P6 in DMSO at different concentrations between $2x10^{-6}$ M and 10^{-5} M.

Fig. S14 UV-vis spectrum of methylene blue

Fig. S15 UV-vis spectrum of P6.

Fig. S16 Lifetime spectra of P6 and Ru-BP.

Fig. S17 Absorbance spectrum of Ru-BP for photodegredation study in DMSO using red LED array.