Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## **Electronic Supplementary Information**

## Preparation of hydrido [CNC]-pincer cobalt complexes via selective C-H/C-F bond activation and their catalytic performances

Fei Yang,<sup>a</sup> Yangyang Wang,<sup>a,b</sup> Faguan Lu,<sup>a</sup> Shangqing Xie,<sup>a</sup> Xinghao Qi,<sup>a</sup> Hongjian Sun,<sup>a</sup> Xiaoyan Li<sup>\*,a</sup>, Olaf Fuhr<sup>c</sup> and Dieter Fenske<sup>c</sup>

| 1. Table S1. Crystallographic Data for Complexes 4, 8, and 11                                   | S2  |
|-------------------------------------------------------------------------------------------------|-----|
| 2. IR, <sup>1</sup> H NMR, <sup>31</sup> P NMR and <sup>19</sup> F NMR spectra of new complexes | S3  |
| 3. <sup>1</sup> H NMR spectra of alcohols                                                       | S27 |

|                               | 4                       | 8                       | 11                       |
|-------------------------------|-------------------------|-------------------------|--------------------------|
| formula                       | $C_{23}H_{28}CoF_2NP_2$ | $C_{23}H_{26}CoF_4NP_2$ | $C_{23}H_{27}CoF_2INP_2$ |
| Mz                            | 477.33                  | 513.34                  | 603.23                   |
| crystal system                | Monoclinic              | Monoclinic              | Orthorhombic             |
| space group                   | P2(1)/c                 | P2(1)/c                 | Pbca                     |
| a [Å]                         | 14.015(3)               | 14.433(7)               | 16.600(2)                |
| b [Å]                         | 12.369(3)               | 12.378(6)               | 15.531(2)                |
| c [Å]                         | 13.372(3)               | 13.442(6)               | 19.029(3)                |
| α [°]                         | 90.00                   | 90.00                   | 90.00                    |
| β [°]                         | 101.86(3)               | 102.169(8)              | 90.00                    |
| γ [°]                         | 90.00                   | 90.00                   | 90.00                    |
| V [ų]                         | 2268.6(8)               | 2347.4(19)              | 4906.0(12)               |
| Т [К]                         | 273(2)                  | 293(2)                  | 293(2)                   |
| Z                             | 4                       | 4                       | 8                        |
| μ[mm <sup>-1</sup> ]          | 0.923                   | 0.909                   | 2.114                    |
| total reflns                  | 13111                   | 12675                   | 27459                    |
| unique reflns                 | 5164                    | 4041                    | 5567                     |
| R <sub>int</sub>              | 0.0210                  | 0.0297                  | 0.0940                   |
| R <sub>1</sub> [I>2σ(I)]      | 0.0295                  | 0.0324                  | 0.0497                   |
| wR(F <sup>2</sup> )[I>2σ(I)]  | 0.0843                  | 0.0919                  | 0.1171                   |
| R <sub>1</sub> (all data)     | 0.0361                  | 0.0481                  | 0.0961                   |
| wR(F <sup>2</sup> )(all data) | 0.0946                  | 0.1047                  | 0.1345                   |
| GOF on F <sup>2</sup>         | 0.613                   | 0.994                   | 1.047                    |

## 1. Selected X-ray crystallographic data







Fig S4<sup>19</sup>F NMR spectrum of 4



Fig S6<sup>1</sup>H NMR spectrum of 5



Fig S8<sup>19</sup>F NMR spectrum of 5



Fig S10 <sup>1</sup>H NMR spectrum of 6

























-



S14









Fig S28 <sup>19</sup>F NMR spectrum of **11** 











Fig S32 <sup>19</sup>F NMR spectrum of **12** 





















Fig S40 <sup>19</sup>F NMR spectrum of 14











Fig S44 <sup>19</sup>F NMR spectrum of 15











Fig S48 <sup>19</sup>F NMR spectrum of **16** 

## 3 <sup>1</sup>H NMR spectra of alcohols

CH<sub>2</sub>OH

10.5 10.0 9.5 9.0 8.5

7.0

6.5

6.0 5.5

8.0

7.5



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, *δ*): 7.24–7.09 (m, *Ar*, 5H), 4.45 (s, CH<sub>2</sub>, 2H), 2.90 (s, OH, 1H).

S27

4.5 4.0 f1 (ppm)

5.0

2.0

1.5 1.0

0.5 0.0

-0.5

-1.0 -1.5 -2.0



500M-1xy-wyy20 --0.00 -2.01800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 • 0 1.22<sub>H</sub> 1.20 3.93 2.27--50 10 f1 (ppm) CH<sub>2</sub>OH Br <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, *δ*): 7.48–7.06 (m, *Ar*, 4H), 4.67 (s, CH<sub>2</sub>, 2H), 2.04 (s, OH, 1H). -2.04-0.00- 700 650 600 550 500 450 400 350 300 250 200 150 100 . 50 . 0 -50

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, δ): 7.41–7.13 (m, Ar, 4H), 4.70 (s, CH<sub>2</sub>, 2H), 2.01 (s, OH, 1H).



-3.49 2800 4.61 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 2.00<sub>€</sub> 2.01<sup>₹</sup> H66.0 -3.5 2.10H -200 11.5 11.0 10.5 10.0 9.5 9.0 4.5 4.0 0.5 0.0 -0.5 -1.0 8.5 8 0 7.0 6.5 5.5 5.0 f1 (ppm) 3.0 2.5 2.0

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, δ): 7.49–7.33 (m, Ar, 4H), 4.61 (q, CH<sub>2</sub>, 2H), 3.49 (s, OH, 1H).

CH<sub>2</sub>OH CI CI

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, δ): 7.26–7.08 (m, Ar, 3H), 4.89 (d, CH<sub>2</sub>, 2H), 2.11 (s, OH, 1H).





<sup>1</sup>H NMR (500 MHz,  $CDCI_3$ ,  $\delta$ ): 7.20–6.78 (m, *Ar*, 4H), 4.50 (s,  $CH_2$ , 2H), 3.72 (s,  $OCH_3$ , 3H), 1.91 (s, OH, 1H).



OH

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, δ): 7.25–7.15 (m, *Ar*, 5H), 4.75 (q, C*H*, 1H), 2.16 (s, O*H*, 1H), 1.39 (d, C*H*<sub>3</sub>, 3H).



F

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, δ): 7.26–6.91 (m, *Ar*, 4H), 4.77 (q, C*H*, 1H), 2.02 (s, O*H*, 1H), 1.37 (d, C*H*<sub>3</sub>, 3H).





<sup>1</sup>H NMR (500 MHz,  $CDCl_3$ ,  $\delta$ ): 7.18–6.76 (m, *Ar*, 4H), 4.70 (q, *CH*, 1H), 3.68 (s,  $OCH_3$ , 3H), 2.26 (s, *OH*, 1H), 1.35 (d, *CH*<sub>3</sub>, 3H).



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.73–7.35 (m, *Ar*, 7H), 4.91 (q, C*H*, 1H), 2.06 (s, O*H*, 1H), 1.47 (d, C*H*<sub>3</sub>, 3H).



OH N

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.46–7.20 (m, Ar, 4H), 4.85-4.79 (q, CH, 1H), 3.83 (s, OH, 1H) , 1.44-1.42 (d, CH<sub>3</sub>, 3H) .



<sup>1</sup>H NMR (500 MHz,  $CDCI_3$ ,  $\delta$ ): 7.20–7.06 (m, *Ar*, 5H), 6.41 (d, *H*C=C, 1H), 6.16 (m, C=CH, 1H), 4.10 (dd, *CH*<sub>2</sub>, 2H), 3.30 (s, *OH*, 1H).





<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.26-7.12 (m, *Ar*, 5H), 6.44 (d, *H*C=C, 1H), 4.09 (dd, CH<sub>2</sub>, 2H), 1.90 (s, OH, 1H) ,1.81 (s, CH<sub>3</sub>, 3H).



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, *δ*): 7.37-7.18 (m, *Ar*, 5H), 4.42 (s, *CH*<sub>2</sub>, 2H), 1.81 (s, *OH*, 1H).





<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, δ): 7.21-7.02 (m, *Ar*, 4H), 6.46 (d, *H*C=C, 1H), 6.24 (m, C=C*H*, 1H), 4.21 (dd, *CH*<sub>2</sub>, 2H), 2.04 (s, *OH*, 1H).



<sup>1</sup>H NMR (500 MHz,  $CDCl_3$ ,  $\delta$ ): 7.28-7.11 (m, *Ar*, 5H), 6.45 (s, *H*C=C, 1H), 4.15 (s, *CH*<sub>2</sub>, 2H), 2.18 (m, *CH*<sub>2</sub>, 2H), 1.63 (s, *OH*, 1H), 1.40 -1.18(m, *CH*<sub>2</sub>, 8H), 0.79 (s, *CH*<sub>3</sub>, 3H).





<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 7.36-7.10 (m, *Ar*, 5H), 6.50 (dd, *H*C=C, 1H), 6.27 (td, C=CH, 1H), 5.02(t, *CH*, 1H), 1.17 (s, *OH*, 1H).

