Supporting Information

Dibenzofuran and Dibenzothiophene based Palladium(II)/NHC Catalysts - Synthesis and Applications in C-C bond formation

Shanmugam Karthik^a and Thirumanavelan Gandhi*^a

^a Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India Email: velan.g@vit.ac.in

Section	Title				
1	General experimental methods and materials and X-ray crystallography	S2			
2	Synthesised Palladium-NHC Catalysts D1-D6	S 3			
3	Crystallographic data of D4	S4			
4	General procedure for Suzuki-Miyaura coupling using D1	S7			
5	General procedure for direct C-H arylation of benzoxazoles with D1	S 13			
6	References	S17			
7	¹ H & ¹³ C NMR spectra of synthesized derivatives	S19			

Table of Contents

1. General experimental methods and materials

Unless otherwise mentioned all the reactions were carried out in screw capped reaction tubes under an inert atmosphere of nitrogen. Anhydrous acetonitrile, DMSO, Dioxane, Pyridine purchased from commercial sources and used without further purification. Chemicals were purchased from Sigma-Aldrich, Alfa Aesar, AVRA. Thin layer chromatography was carried on 250 mm diameter aluminium supported silica gel TLC plates (MERCK TLC Plates). ¹H NMR spectra were recorded on Bruker spectrometer (400 MHz) and reported in units *ppm* (parts per million) relative to the signals for residual chloroform (7.26 *ppm*) and DMSO (2.54 *ppm*) in the deuterated solvent. ¹³C NMR spectra were recorded on Bruker spectrometer (100 MHz) and are reported in *ppm* relative to deuterated chloroform (77.23 *ppm*) and DMSO (39.52 *ppm*) with tetramethyl silane as an internal standard. Coupling constants (*J*) are reported in Hz; splitting patterns are assigned *s* = singlet, *d* = doublet, *t* = triplet, *q* = quartet, *dd* = doublet of doublets, *br* = broad signal. High-resolution mass spectra (HRMS) were performed on MS-EI analyser.

X-ray crystallography of D4

Single crystal X-ray structural data of the compounds **D4** were collected on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC microfocus source with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) operating at 50 kV and 30 mA. The SAINT¹ program was used for the integration of diffraction profiles and absorption correction was applied with the SADABS² Program. Both the structures were initially solved by SIR 92³ and refined by the full matrix least squares method using SHELXL-2013⁴ and WinGX system, Ver 2013.3.⁵ The non-hydrogen atoms in both the structures were located using the difference Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX and placed in ideal positions and included in the refinement process using a riding model with isotropic thermal parameters. crystallographic and structure refinement data of **D4** are summarized in Table S4. The crystallographic information files are deposited with the **CCDC 1845489**.

2. Synthesised Palladium-NHC Catalysts D1-D6

3. Crystallographic data of D4

Bond distance

Atom	Atom	Distance (Å)	Atom	Atom	Distance (Å)
Pd1	Br1	2.418(9)	C17	C21	1.390(5)
Pd1	Br2	2.421(9)	C8	C9	1.321(5)
Pd1	N3	2.105(3)	C22	C23	1.390(6)
Pd1	C10	1.957(4)	C22	C27	1.388(8)
S1	C18	1.741(4)	C21	C20	1.362(7)
S1	C22	1.745(5)	C23	C24	1.396(6)
N2	C16	1.432(4)	C24	C25	1.380(1)
N2	C10	1.360(5)	C25	C26	1.378(9)
N2	С9	1.391(4)	C26	C27	1.368(8)
C15	C13	1.370(1)	C2	С3	1.388(7)
C15	C14	1.347(9)	C6	C5	1.350(1)
N1	C10	1.337(4)	C3	C4	1.370(2)
N1	C8	1.387(5)	C4	C5	1.330(1)

N1	C7	1.469(5)	C19	C20	1.390(6)
N3	C12	1.328(5)	C19	C23	1.455(7)
N3	C11	1.333(5)	C16	C17	1.370(5)
C18	C19	1.402(5)	C13	C11	1.378(7)
C18	C16	1.399(5)	C14	C12	1.372(7)
C1	C7	1.490(5)	C1	C2	1.365(5)

Bond angles

Atom 1	Atom 2	Atom 3	Angle[°]	Atom 1	Atom 2	Atom 3	Angle[°]
Br1	Pd1	Br2	175.8(2)	N2	C16	C18	119.7(3)
Br1	Pd1	N3	91.1(8)	N2	C16	C17	120.7(3)
Br1	Pd1	C10	87.5(1)	C18	C16	C17	119.5(3)
Br2	Pd1	N3	92.2(8)	C15	C13	C11	119.1(6)
Br2	Pd1	C10	89.0(1)	C15	C14	C12	119.0(5)
N3	Pd1	C10	177.7(1)	C16	C17	C21	120.1(4)
C18	S 1	C22	90.8(2)	Pd1	C10	N2	128.7(3)
C16	N2	C10	125.3(3)	Pd1	C10	N1	126.1(3)
C16	N2	C9	125.0(3)	N2	C10	N1	105.1(3)
C10	N2	C9	109.7(3)	N1	C8	C9	107.0(3)
C13	C15	C14	119.4(6)	S 1	C22	C23	112.9(3)
C10	N1	C8	110.9(3)	S1	C22	C27	125.9(4)
C10	N1	C7	124.2(3)	C23	C22	C27	121.2(5)
C8	N1	C7	124.9(3)	N2	C9	C8	107.4(3)
Pd1	N3	C12	120.6(3)	N3	C12	C14	122.7(4)
Pd1	N3	C11	121.2(3)	C17	C21	C20	120.8(4)
C12	N3	C11	118.2(3)	N1	C7	C1	112.8(3)

S1	C18	C19	113.1(3)	C19	C20	C21	120.6(4)
S1	C18	C16	126.7(3)	C19	C23	C22	112.1(4)
C19	C18	C16	120.2(3)	C19	C23	C24	128.8(4)
C7	C1	C2	120.8(4)	C22	C23	C24	119.1(4)
C7	C1	C6	120.5(4)	C23	C24	C25	119.2(5)
C2	C1	C6	118.7(4)	N3	C11	C13	121.6(4)
C18	C19	C20	118.7(4)	C24	C25	C26	120.8(6)
C18	C19	C23	111.1(4)	C25	C26	C27	121.0(6)
C20	C19	C23	130.2(4)	C22	C27	C26	118.7(6)
C1	C2	C3	120.0(5)	C1	C6	C5	121.0(7)
C2	C3	C4	118.8(7)	C3	C4	C5	120.7(9)
C6	C5	C4	120.6(9)				

4. General procedure for Suzuki-Miyaura coupling using D1

An oven-dried vial equipped with a stir bar was charged with 2-bromo pyridine (0.31 mmol) and the corresponding phenyl boronic acid (0.47 mmol), potassium carbonate (0.63 mmol), **D1** (5 mol%), followed by toluene-water (4:1 mL). Then the reaction mixture was placed in a preheated oil bath at 95 °C and stirred for 16 h. After the indicated time, the reaction mixture was diluted with water (5 mL), extracted with ethyl acetate (5 mL x 2) and concentrated. The crude material was purified by column chromatography on silica gel with n-hexane - ethyl acetate as eluent, to yield the title compound.

2-phenylpyridine-**3a**, colorless oil, 41 mg, 85% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.53 (d, *J* = 4.8 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.61-7.55 (m, 2H), 7.33-7.23 (m, 3H), 7.09-7.05 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 152.76, 144.94, 134.67, 132.01, 124.21, 124.01, 122.18, 117.36, 115.85.

Spectral data match those previously reported.⁶

2-(*m*-tolyl)pyridine, **3b**, colorless oil, 43 mg, 81% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.62 (d, *J* = 4.4 Hz, 1H), 7.76 (s, 1H), 7.68-7.63 (m, 3H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.16-7.12 (m, 2H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.67, 149.61, 139.38, 138.42, 136.70, 129.72, 128.64, 127.66, 124.01, 122.01, 120.65, 21.52.

Spectral data match those previously reported.⁷

2-(*p*-tolyl)pyridine, **3c**, colorless oil, 45 mg, 86% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.59 (d, *J* = 4.4 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.67-7.61 (m, 2H), 7.21-7.10 (m, 3H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 157.49, 149.60, 138.95, 136.69, 129.49, 126.78, 121.81, 120.28, 21.28.

Spectral data match those previously reported.⁸

2-(3-methoxyphenyl)pyridine, 3d, colorless oil, 50 mg, 86% of yield.

¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.8 Hz, 1H), 7.70-7.63 (m, 2H), 7.51-7.45 (m, 2H), 7.31 (t, J = 8.0 Hz, 1H), 7.18-7.14 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H), 3.82 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 159.05, 156.24, 148.56, 139.85, 135.73, 128.69, 121.22, 119.71, 118.29, 114.08, 110.98, 54.35.

Spectral data match those previously reported.⁸

2-(4-methoxyphenyl)pyridine, **3e**, off-white solid, 51 mg, 88% of yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.56 (d, *J* = 4.8 Hz, 1H), 7.87 (d, *J* = 8.8 Hz, 2H), 7.65-7.57 (m, 2H), 7.11-7.07 (m, 1H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.46, 157.14, 149.55, 136.67, 132.04, 128.17, 121.41, 119.82, 114.13, 55.36.

Spectral data match those previously reported.8

2-(4-chlorophenyl)pyridine, **3f**, off-white solid, 39 mg, 66% of yield.

¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 4.4 Hz, 1H), 7.86 (d, J = 8.8 Hz, 2H),
7.67 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.16-7.15 (m, 1H),
¹³C NMR (100 MHz, CDCl₃) δ 156.24, 149.76, 137.82, 136.88, 135.11, 128.94, 128.18, 122.38, 120.35.

Spectral data match those previously reported.9

1-(4-(pyridin-2-yl)phenyl)ethan-1-one, **3g**, off-white solid, 37 mg, 60% of yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.66 (d, *J* = 4.4 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.99 (d, *J* = 9.6 Hz, 2H), 7.73-7.71 (m, 2H), 7.24-7.20 (m, 1H), 2.58 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.87, 156.11, 149.94, 143.61, 136.95, 128.83, 127.05, 122.94, 121.05, 26.77.

Spectral data match those previously reported.¹⁰

2-([1,1'-biphenyl]-4-yl)pyridine, **3h**, colorless oil, 51 mg, 71% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.66 (d, *J* = 4.4 Hz, 1H), 8.11 (d, *J* = 8.0 Hz, 2H), 7.80-7.68 (m, 6H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 6.8 Hz, 1H), 7.27-7.25 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.06, 149.75, 141.72, 140.60, 138.29, 136.77, 128.84, 127.48, 127.30, 127.12, 122.13, 120.46.

Spectral data match those previously reported.¹¹

2-(naphthalen-2-yl)pyridine, 3i, grey solid, 44 mg, 69% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.66 (d, *J* = 4.8 Hz, 1H), 8.51 (s, 1H), 8.18-8.16 (m, 1H), 7.98-7.89 (m, 4H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.55-7.52 (m, 2H), 7.29-7.26 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 157.35, 149.80, 136.84, 136.69, 133.69, 133.54, 128.75, 128.48, 127.69, 126.55, 126.35, 126.32, 124.58, 122.18, 120.85.

Spectral data match those previously reported.¹²

3-(4-methoxyphenyl)pyridine, **3j**, colorless oil, 36 mg, 63% of yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.73 (d, *J* = 2.0 Hz, 1H), 8.46 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.76-7.73 (m, 1H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.26-7.23 (m, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.78, 147.96, 147.84, 136.27, 133.87, 128.22, 123.50, 114.57, 55.38.

Spectral data match those previously reported.¹³

3-(4-methoxyphenyl)quinoline, **3k**, off-white solid, 40 mg, 55% of yield.

¹**H** NMR (400 MHz, CDCl₃) δ 9.07 (d, J = 2.4 Hz, 1H), 8.15 (d, J = 2.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.63-7.56 (m, 3H), 7.47 (t, J = 7.2 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.81, 149.86, 147.02, 133.49, 132.39, 130.29, 129.19, 129.08, 128.52, 128.13, 127.88, 126.95, 114.68, 55.42.

Spectral data match those previously reported.¹⁴

6-(4-((λ^1 -oxidanyl)- λ^5 -methyl)phenyl)quinoline **3**l, grey solid, 51 mg, 70% of yield.

¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, J = 4.0, 1.6 Hz, 1H), 8.12-8.06 (m, 2H), 7.89-7.87 (m, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.35-7.32 (m, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 159.55, 150.08, 147.41, 138.94, 136.14, 132.78, 129.78, 129.09, 128.51, 124.65, 121.44, 114.44, 55.44.

Spectral data match those previously reported.⁸

8-(4-methoxyphenyl)quinoline 3m, colorless oil, 48 mg, 65% of yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 4.0 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 6.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.31-7.28 (m, 1H), 6.95 (d, J = 8.4 Hz, 2H), 3.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.01, 150.16, 146.16, 140.52, 136.27, 131.76, 130.00, 128.82, 127.13, 126.33, 120.95, 113.61, 55.35.

Spectral data match those previously reported.¹⁵

8-(4-methoxyphenyl)benzofuro[3,2-*b*]pyridine, **3n**, pale yellow solid, 43 mg, 50% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.56 (d, *J* = 4.8 Hz, 1H), 8.32 (s, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.56-7.53 (m, 3H), 7.32-7.29 (m, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.17, 156.63, 150.22, 145.24, 144.34, 136.90, 133.32, 128.39, 123.75, 121.38, 118.92, 118.75, 114.38, 112.26, 55.39.

4-(4-methoxyphenyl)dibenzo[*b*,*d*]furan, **30**, off-white solid, 37 mg, 44% of yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.6 Hz, 1H), 7.82-7.77 (m, 3H), 7.52-7.47 (m, 2H), 7.39-7.25 (m, 3H), 6.99 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.37, 156.77, 153.31, 129.95, 128.87, 127.16, 126.46, 125.59, 124.85, 124.31, 123.21, 122.73, 120.69, 119.08, 114.16, 111.84, 55.39.
 Spectral data match those previously reported.¹⁶

4-methoxy-1,1'-biphenyl, **3p**, off-white solid, 52 mg, 90% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 7.48 (t, *J* = 8.0 Hz, 4H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.16, 140.85, 133.80, 128.75, 128.18, 126.76, 126.68, 114.22, 55.37.

Spectral data match those previously reported.¹²

5. General procedure for direct C-H arylation of benzoxazoles with D1

An oven-dried vial equipped with a stir bar was charged with benzoxazole (0.42 mmol) and the corresponding bromobenzene (0.58 mmol), lithium tertiary butoxide (1.26 mmol), **D1** (5 mol%), followed by DMF (0.5 mL). Then the reaction mixture was placed in a preheated oil bath at 120 °C and stirred for 16 h. After the indicated time, the solvent was removed and purification by flash column chromatography on silica gel with n-hexane - ethyl acetate as eluent, to yield the title compound.

2-phenylbenzo[d]oxazole, **6a**, pale yellow solid , 49 mg, 60% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.20-8.18 (m, 2H), 7.72-7.69 (m, 1H), 7.53-7.50 (m, 1H), 7.46-7.45 (m, 3H), 7.29-7.27 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 163.07, 150.79, 142.14, 131.53, 128.92, 127.64, 127.21, 125.12, 124.59, 120.04, 110.60.

Spectral data match those previously reported.¹⁷

2-(o-tolyl)benzo[*d*]oxazole, **6b**,colorless oil, 35 mg, 41% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.10 (d, *J* = 7.6 Hz, 1H), 7.74-7.72 (m, 1H), 7.53-7.51 (m, 1H), 7.37-7.33 (m, 1H), 7.30-7.28 (m, 4H), 2.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.43, 150.31, 142.12, 138.86, 131.80, 130.92, 129.96, 126.07, 125.02, 124.38, 120.15, 110.49, 22.20.

Spectral data match those previously reported.²¹

2-(m-tolyl)benzo[*d*]oxazole, **6c**, colorless oil, 48 mg, 55% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.01 (s, 1H), 7.97 (d, *J* = 7.6 Hz, 1H), 7.70-7.68 (m, 1H), 7.50-7.48 (m, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.27-7.25 (m, 3H), 2.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.28, 150.76, 142.12, 138.76, 132.38, 128.84, 128.21, 127.03, 125.05, 124.79, 124.56, 119.97, 110.57, 21.36.

Spectral data match those previously reported.¹⁸

2-(p-tolyl)benzo[d]oxazole 6d, colorless oil, 52 mg, 61% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.06 (d, J = 8.0 Hz, 2H), 7.69-7.67 (m, 1H), 7.50-7.47 (m, 1H), 7.27-7.24 (m, 4H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.32, 150.70, 142.18, 142.08, 129.66, 127.61, 124.88, 124.49, 119.85, 110.51.

Spectral data match those previously reported.¹⁷

2-(4-methoxyphenyl)benzo[*d*]oxazole, **6e**, off-white solid, 60 mg, 64% of yield.

¹**H NMR (400 MHz, CDCl₃)** δ 8.14-8.11 (m, 2H), 7.67-7.65 (m, 1H), 7.49-7.47 (m, 1H), 7.26-7.23 (m, 2H), 6.97-6.94 (m, 2H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.20, 162.35, 150.70, 142.30, 129.41, 124.61, 124.43, 119.73, 119.63, 114.38, 110.39, 55.47.

Spectral data match those previously reported. ¹⁸

2-(4-fluorophenyl)benzo[*d*]oxazole, 6f, off-white solid, 48 mg, 55% of yield.
¹H NMR (400 MHz, CDCl₃) δ 8.19-8.16 (m, 2H), 7.69-7.67 (m, 1H), 7.50-7.48 (m, 1H), 7.28-7.26 (m, 2H), 7.15-7.11 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 166.09, 163.58, 162.19, 150.78, 142.06, 129.90, 129.81, 125.16, 124.68, 123.53, 123.49, 119.99, 116.32, 116.10, 110.59.

Spectral data match those previously reported.¹⁸

2-(thiophen-2-yl)benzo[d]oxazole, **6g**, colorless oil, 40 mg, 48% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 7.85-7.83 (m, 1H), 7.67-7.65 (m, 1H), 7.49-7.46 (m, 2H), 7.28-7.25 (m, 2H), 7.13-7.11 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 159.07, 150.45, 142.01, 130.27, 129.96, 129.67, 128.27, 125.10, 124.74, 119.82, 110.44.

Spectral data match those previously reported.¹⁹

2-(naphthalen-2-yl)benzo[*d*]oxazole, **6h**, off-white solid, 53 mg, 52% of yield. **¹H NMR (400 MHz, CDCl₃)** δ 8.69 (s, 1H), 8.23 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.91-7.88 (m, 2H), 7.82-7.80 (m, 1H), 7.74-7.72 (m, 1H), 7.55-7.47 (m, 3H), 7.30-7.28 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 163.23, 150.89, 142.24, 134.77, 133.00, 128.97, 128.80, 128.17, 127.93, 127.82, 126.92, 125.20, 124.66, 124.42, 123.98, 120.04, 110.61.
 Spectral data match those previously reported.²⁰

5-methyl-2-phenylbenzo[*d*]oxazole, **6i**, colorless oil, 43 mg, 56% of yield.

¹**H NMR (400 MHz, CDCl**₃) δ 8.18-8.16 (m, 2H), 7.48-7.44 (m, 4H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.14, 149.43, 142.29, 134.42, 131.40, 128.89, 127.56, 126.25, 119.92, 109.96, 21.55.

Spectral data match those previously reported.²¹

6. References

1. SMART (V 5.628), SAINT (V 6.45a), XPREP, SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.

2. G. M. Sheldrick, Siemens Area Detector Absorption Correction Progra, University of Göttingen, Göttingen, Germany, 2004.

3. A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.

4. G. M. Sheldrick, SHELXL-2014, Program for Crystal Structure Solution and Refinement, University of Göttingen, Göttingen, Germany, 2014.

5. L. J. Farrugia, WinGX-A Windows Program for Crystal Structure Analysis, J. Appl. Crystallogr., 2012, 45, 849.

6. Ilie, A.; Roiban, G. D.; Reetz, M. T. ChemistrySelect 2017, 2, 1392.

7. Rao, X.; Liu, C.; Xing, Y.; Fu, Y.; Qiu, J.; Jin, Z. Asian J. Org. Chem. 2013, 2, 514.

8. Ackermann, L.; Kapdi, A.R.; Fenner, D. C. S.; Kornhaaß, D. C. C.; Schulzke, C. *Chem. Eur. J.* **2011**, *17*, 2965.

9. Fabry, D. C.; Ho, Y. A.; Zapf, R.; Tremel, W.; Panthöfer, M. Rueping, M.; Rehm, T.H *Green Chem.*, **2017**, *19*, 1911.

10. Yang, J.; Liu, S.; Zheng, J. F.; Zhou, J. S. Eur. J. Org. Chem. 2012, 31, 6248.

11. Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.;

Stauffer, S. R.; Burgey, C. S. Org. Lett. 2009, 2, 345.

12. Yamamoto, K.; Otsuka, S.; Nogi, K.; Yorimitsu, H. ACS Catal., 2017, 7, 7623.

- 13. Chen, X.; Zhou, L.; Li, Y.; Xie, T.; Zhou, S. J. Org. Chem., 2014, 79, 230.
- 14. Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nature Communications, 2015, 6, 7508.
- Leowanawat, P.; Zhang, N.; Resmerita, A. M.; Rosen, B. M.; Percec, V. J. Org. Chem., 2011, 76, 9946.
- Noël, T.; Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 5943.
- 17. Nguyen, L.H.T.; Nguyen, T.T.; Nguyen, H. L.; Doan, T.L.H.; Tran, P.H. *Catal. Sci.Technol.* **2017**,*7*, 4346.
- 18. Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Chem. Commun. 2014,50, 6145.

19. Amaike, K.; Muto, K.; Junichiro Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 134, 33, 13573.

20. Zhu, F.; Wang, Z. X. Org. Lett. 17, 6, 1601.

21. Li. Y.; Yu, X.; Wang, Y.; Fu, H.; Zhen, X.; Chen, H.; Li, R. Organometallics, 2018, 37, 979.

7. Copies of ¹H & ¹³C NMR spectra of synthesized derivatives

