Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Fabrication of the magnetic g-C₃N₄ for effectively enhanced tetracycline degradation with RGO as mediator

Wenqian Fan^a, Zhi Zhu^b, Yang Yu^b, Zhi Liu^{*a}, Chunxiang Li^b, Pengwei Huo^b, Yue Qiu^c, Yongsheng Yan^{*b}

- a. Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
- Institute of the Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhen Jiang 212000, P.R. China
- c. Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, Victoria, 3052, Australia

2.4 Adsorption, photocatalytic experiments

The adsorption behavior of these samples was carried out by adsorbing tetracycline aqueous solution. In a typical reaction system, 0.05 g Fe₃O₄@g-C₃N₄/RGO was added into 100 mL, 20 mg L⁻¹ tetracycline solution with magnetically stirred. Then, 5 mL solutions were sampled with an injector in each 20 min until reached adsorption/desorption equilibration. The photocatalytic activities were evaluated through decomposing tetracycline under a 300 W Xe lamp with 0.05 g photocatalyst, the irradiation time was interval of every 20 min, and 4 mL solution was sampled and magnetic separated, then monitoring the absorbance of tetracycline by UV–vis spectrophotometer.

2.5 Photoelectrochemical measurements

The photoelectrochemical performance of samples was investigated by the photocurrent response and electrochemical impedance spectroscopy (EIS) in a CHI852C electrochemical station with a Xenon lamp (Newport 69920, 300 W). The as-prepared samples were dipcoated onto FTO substrates (1.0 cm²) and used as corresponding working electrodes. A Pt electrode and Ag/AgCl (saturated KCl) were used as counter electrode and reference electrode, respectively. EIS measurements were carried out on a ZENNIUM electrochemical workstation (Zahner Instruments, Germany).

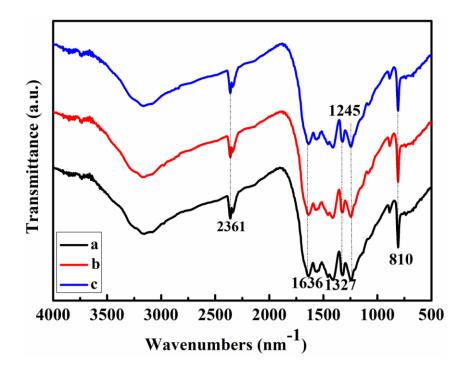


Fig. S1 FT-IR spectra of (a) g-C_3N_4, (b) 5% Fe_3O_4@g-C_3N_4 and (c) 5% Fe_3O_4@g-C_3N_4/RGO

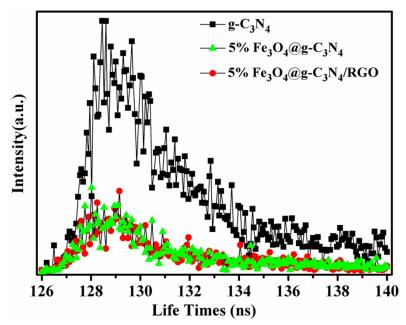


Fig. S2 The FL spectra of $g-C_3N_4$, 5% Fe₃O₄@ $g-C_3N_4$ and 5% Fe₃O₄@ $g-C_3N_4$ /RGO

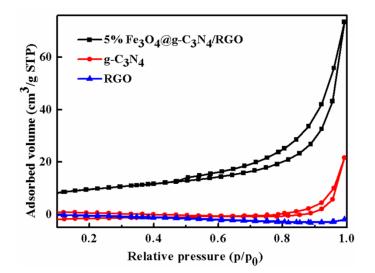
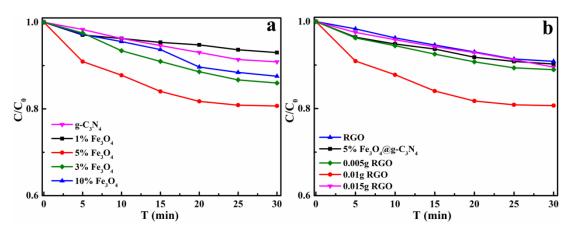



Fig. S3 BET analysis of g-C₃N₄, RGO, and 5% Fe₃O₄@g-C₃N₄/RGO

Fig. S4 (a) The adsorption ability of tetracycline over the sample with different Fe_3O_4 ratios and the same RGO amount (10 mg). (b) The adsorption ability of tetracycline over the sample with different RGO amount and the same Fe_3O_4 ratios of 5% and without RGO.

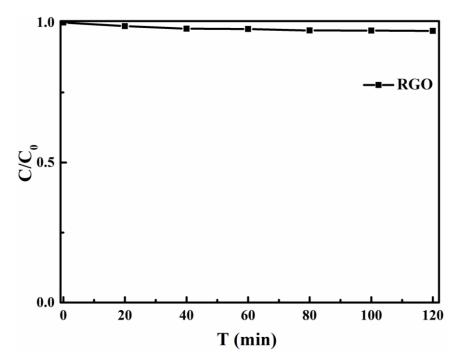


Fig. S5 Effect of the RGO on degradation of tetracycline