Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry 2018

Characterization and Study of Luminescence Enhancement Behaviour of Alginate-

Based Hydrogel

Mengmeng Kang,^a Olayinka Oderinde,^a Yaoyao Deng, ^a Shunli Liu,^a Fang Yao,^a and Guodong Fu*^a

School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province,

China 211189.

* To whom correspondence should be addressed:

Tel.: +86-25-52090625; Fax: +86-25-52090625

Email: 101010855@seu.edu.cn

S1. Preparation of spherical SA-Tb (III) hydrogel

SA solutions (4%, wt.%) was carefully dropped into Tb^{3+} solution (0.01 M) and SSA- Tb^{3+} solution (Tb^{3+} 0.01 M, SSA 0.03 M), respectively, using a syringe., while the hydrogels were fabricated after 12 h. Thereafter the as-fabricated hydrogels were subsequently immersed in deionized water several times to remove the unreacted ions. As shown in **Fig.S1**, both the hydrogel exhibited luminescence under UV light irradiation, with the one with SSA exhibiting stronger green light.

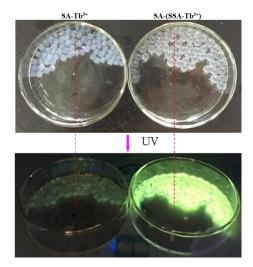


Fig.S1 Spherical SA-Tb (III) hydrogel (left) and spherical SA-(SSA-Tb(III)) hydrogel (right) with (lower) and without UV

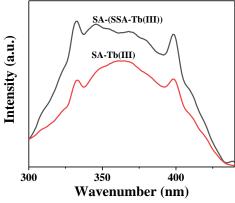
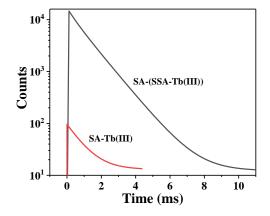



Fig. S2 Excitation spectrum of hydrogels SA-Tb (III) and SA-(SSA-Tb(III)) at an

emission wavelength of 544 nm, respectively.

irradiation (upper).

Fig. S3 Luminescence decay curves of samples measured at room temperature using an excitation of 350 nm and monitored around the most intense emission line at 544