Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

A Practical Green Approach to Diversified Spirochromene/Spiropyran Scaffolds via a Glucose-

Water Synergy Driven Organocatalytic System

Fatima Tufail,^a Mohammad Saquib,^a Swastika Singh,^a Jyoti Tiwari,^a Preety Dixit,^a Jaya Singh,^b Jagdamba Singh^{a*}

^aEnvironmentally Benign Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002 (India); Tel: +919415218507; E-mail: dr.jdsau@gmail.com

^bDepartment of Chemistry, LRPG College, Sahibabad, Ghaziabad 201005, India

Title Page	1
Experimental (General Remarks)	2
General Experimental Procedure	2-3
Figure	4
Spectral data for 4a, 4c, 4d	5-22
Literature Reference and Melting Point Table for all reported compounds	23-30
References	30

Experimental

General Remarks

All chemicals were reagent grade and purchased from Aldrich, Alfa Aesar, Merck, Spectrochem and Qualigens and were used without further purification. The reactions were monitored using pre-coated Aluminium TLC plates of silica gel G/UV-254 of 0.25 mm thickness (Merck 60 F-254). Column chromatography was performed using silica gel (60-120) and (100-200). NMR spectra were recorded on a Bruker Avance-II 400FT spectrometer at 400 MHz, 300 MHz (¹H) and 100 MHz. 75 MHz (¹³C) in DMSO using TMS as an internal reference. Mass spectra (ESIMS) were obtained on a Waters UPLC-TQD mass spectrometer. Elemental analyses were carried out in a Thermo Scientific (FLASH 2000) CHN Elemental Analyser. Melting points were determined by open glass capillary method and were uncorrected.

General Experimental Procedure ^{ab}

Compound 4a-4k: To a 50 mL round bottom flask containing 40 mol% of glucose in 5 mL of water was added the respective isatins (1 mmol) and the respective CH-acids (1 mmol) and the resulting mixture was stirred at 45 °C. On completion of the reaction (TLC control), the reaction mixture was allowed to stand undisturbed for 15 minutes whence the solid product that settled down was filtered, washed with water and dried. The crude product was then recrystallized from ethanol to obtain the pure compound. The aqueous filtrate so obtained was then reused for the next cycle. Only a slight decrease in the yield of the product was observed even after reusing the glucose solution for three cycles, thereby amply demonstrating the recyclability of glucose as a catalyst.

Compound 6a-6d & 8a-8d: To a 50 mL round bottom flask containing 40 mol% of glucose in 5 mL of water was added ninhydrin/acenaphthelene (1 mmol) and the respective CH-acids (1 mmol) and the resulting mixture was stirred at 45 °C. On completion of the reaction (TLC control), the reaction mixture was allowed to stand undisturbed for 15 minutes whence the solid product which settled down was filtered, washed with water and dried. The crude product was then recrystallized from ethanol to obtain the pure

compound. The aqueous filtrate so obtained was then reused for the next cycle. Only a slight decrease in the yield of the product was observed even after reusing the glucose solution for three cycles, thereby amply demonstrating the recyclability of glucose as a catalyst.

Compound 10a-10d: To a 50 mL round bottom flask containing 40 mol% of glucose in 5 mL of water was added the respective aldehydes (1 mmol) and respective CH-acids (1 mmol) and the resulting mixture was stirred at 55 °C. On completion of the reaction (TLC control), the reaction mixture was allowed to stand undisturbed for 15 minutes whence the solid product which settled down was filtered, washed with water and dried. The crude product was then recrystallized from ethanol to obtain the pure compound. The aqueous filtrate so obtained was then reused for the next cycle. Only a slight decrease in the yield of the product was observed even after reusing the glucose solution for three cycles, thereby amply demonstrating the recyclability of glucose as a catalyst.

^aIn those instances where required purity could not be achieved through recrystallization, column chromatography (100-200 mesh silica gel; EtOAc/Hexane) was performed to obtain the pure molecules.

^bIn some cases the temperature required was 55 °C.

Figure S1. The phenomenon of the multicomponent reaction between Isatin, Malononitrile and Dimedone. (A) The reaction mixture at the completion of the reaction. (B) The product precipitated after allowed the reaction to stand.

Compound 4a

2-amino-7,7-dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-indoline]-3-carbonitrile Yield: 96%, 321.6 mg; White solid; Mp: 290-293°C^{14k} ¹HNMR (300 MHz, DMSO-d6) (δ, ppm) 1.02-0.99 (6H, m), 2.14-2.11 (2H, m), 2.55-2.50 (2H, m), 6.80-6.77 (1H, m), 6.91-6.86 (1H, m), 6.99-6.96 (1H, m), 6.97-6.95 (2H, s), 7.25 (2H, m), 7.16-7.11 (1H, m), 10.42 (1H, s); ¹³CNMR (400 MHz, DMSO-d6) (δ, ppm) 27.0, 27.6, 32.0, 40.3, 46.8, 50.0, 57.4, 109.3, 110.8, 117.4, 121.7, 123.0, 128.2, 134.4, 142.0, 158.3, 164.2, 178.1, 195.0; MS (ESI): *m/z* 335; found 336 [M+H]⁺; Anal. calcd for C₁₉H₁₇N₃O₃: C 68.09; H 5.10; N 12.49; Found C 68.05, H 5.12, N 12.55%.

Compound 4c

6'-amino-2,2',4'-trioxo-1',2',3',4',4a',8a'-hexahydrospiro[indoline-3,5'-pyrano[2,3-d]pyrimidine]-7'-carbonitrile Yield: 92%, 299.0 mg; Mp: 297-298°C^{14e 1}HNMR (300 MHz, DMSO-d6) (δ, ppm) 6.8-6.78 (1H, m), 6.93-6.88 (1H, m), 7.18-7.12 (3H, m), 7.39 (2H, s),

10.50 (1H, s), 11.15 (1H, s), 12.29 (1H, brs); ¹³CNMR (400 MHz, DMSO-d6) (δ, ppm) 40.34, 46.7, 57.8, 86.8, 109.4, 117.0, 121.9, 123.8, 133.6, 128.5, 142.1, 149.3, 153.4, 158.3, 161.5, 177.7; MS (ESI): *m/z* 325; found 326 [M+H]⁺; Anal calcd for C₁₅H₁₁N₅O₄: C 55.35; H 3.45; N 21.50; Found C 55.39, H 3.41, N 21.53%.

Compound 4d

2'-*amino-2,5'-dioxo-5'H-spiro[indoline-3,4'-pyrano[3,2-c] chromene]-3'-carbonitrile* Yield: 90%, 321.3 mg; Mp: 289-290°C^{14t 1}HNMR (400 MHz, DMSO-d6) (δ, ppm) 1.05-1.04 (6H, d, J =13.84), 2.13 (2H, *q*, *J* = 16), 2.56-2.51 (2H, m), 6.81-6.79 (1H, m), 6.91-6.87 (1H, m), 6.97-6.95 (1H, m), 8.02 (1H, m), 10.49 (1H, m); MS (ESI): *m/z* 357; found 358 [M+H]⁺; Anal calcd for C₂₀H₁₁N₃O₄: C 67.20; H 3.12; N 11.75; Found C 67.23, H 3.10, N 11.76%.

Compound 4k

2-*Amino-5'-chloro-7,7-dimethyl-2',5-dioxo-5,6,7,8-tetrahydrospiro* [chromene-4,3 '-indoline]-3-carbonitrile Yield: 95%, 351.3 mg; Mp: 290-291°C^{14c} ¹H NMR (400MHz, DMSO-d6): δ = 1.02 (6H, s), 2.161-2.164 (2H, m), 2.51-2.57 (2H, m), 6.81 (1H, d, J = 8.2 Hz), 7.11 (1H, d, J = 2.1 Hz), 7.20 (1H, dd, J=8.3 & 2.2), 7.32 (2H, s), 10.55 (1H, s) ppm. MS (ESI):m/z 369; found 370 [M+H] +; Anal. Calcd. for C₁₉H₁₆ClN₃O₃: C, 61.71; H, 4.36; N, 11.36; Found: C, 60.92; H, 4.41; N, 10.37.

Compound 6b

2-amino-8,8-dimethyl-1',3',5-trioxo-1',3',5,6,7,8-hexahydrospiro[chromene-4,2'-indene]-3-carbonitrile Yield: 88%, 306.5 mg; Mp: 291-294°C^{14s} 1 H-NMR (DMSO-d6, 400 MHz): d (ppm) = 1.04 (6H, s), 2.20 (2H, s), 2.62 (2H, s), 7.66 (2H, s), 8.00-8.06 (4H, m) ppm. 13C-NMR (DMSO-d6, 100 MHz): 27.1, 32.4, 48.9, 51.7, 53.0, 109.9, 116.8, 123.1, 136.6, 140.5, 159.8, 166.4, 196.0, 199.7 ppm. MS (ESI):m/z 348; found 349 [M+H]⁺; Anal. Cacld for $C_{23}H_{18}N_2O_3$: C, 74.58; H, 4.90; N, 7.56. Found: C, 75.10; H, 4.79; N, 7.19

Compound 8a

2'-amino-7',7'-dimethyl-2,5'-dioxo-5',6',7',8'-tetrahydro-2H-spiro[acenaphthylene-1,4'-chromene]-3'-carbonitrile Yield: 95%, 351.6 mg; Mp: 269-272°C^{14t} 1HNMR (DMSO-d6, 400 MHz): δ = 1.04 (6H, d, J=6.7 Hz), 2.09-2.10 (2H, m), 2.63 (2H, s), 7.34 (2H, s), 7.40 (1H, d, J = 6.5 Hz,), 7.66 (1H, t, J = 7.3 Hz), 7.84 (1H, t, J = 7.2 Hz), 7.95 (2H, d, J=7.2 Hz), 8.28 (1H, d, J = 7.8 Hz).13C NMR (DMSO-d6, 400 MHz): δ = 27.1, 27.4, 32.0, 49.6, 50.9, 58.0, 112.0, 117.4, 119.8, 121.4, 124.5, 128.4, 128.8, 129.7, 131.4, 132.1, 140.5, 143.1, 158.7, 164.5, 195.2, 203.5 ppm. MS (ESI):m/z 370; found 371 [M+H]⁺; Anal. Cacld for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56. Found: C, 75.10; H, 4.79; N, 7.19

Compound 10c

2-amino-4-(4-nitrophenyl)-5-oxo-4,5-dihydropyrano[3,2-c] chromene-3-carbonitrile Yield: 83%, 299.9 mg; Mp: 257-259 °C^{15d} 1H NMR (DMSO-d₆) (δ, ppm): 4.62 (1H, s), 7.36-7.44 (2H, m), 7.45 (2H, s), 7.52-7.54 (2H, m), 7.63-7.67 (1H, m) 7.90 (1H, dd, J=8.0 & 1.6), 8.12-8.14 (2H, d, J=8.8 Hz) ppm. MS (ESI):m/z 361; found 362 [M+H]⁺; Anal. calcd for C₁₉H₁₁N₃O₅: C 63.16, H 3.07, N 11.63; found C 63.71 H 3.10, N 11.21 %.

¹H NMR spectrum of compound 4a (crude product)

¹H NMR spectrum of compound 4a and its expansion (Column purified product)

¹³C NMR spectrum of compound 4a

HMBC spectrum of compound 4a

HSQC spectrum of compound 4a

DEPT135 spectrum of compound 4a

¹H NMR spectrum of compound 4k

¹H NMR spectrum of compound 6b

¹³C NMR spectrum of compound 6b

¹H NMR spectrum of compound 8a

¹³C NMR spectrum of compound 8a

¹H NMR spectrum of compound 10c

¹H NMR spectrum expansion of compound 10c

4.	$ \begin{array}{c} $	239-241	243-245	14k
5.	$H_2N - O O O O O O O O O O O O O O O O O O $	238-241	238-240	14v
6.	O O O CN O H Ag	247-248	250-252	14d
7.	$ \begin{array}{c} $	180-184	180-182	14f

12.	6b	291-294	292-294	14s
13.	6c	258-262	255-260	14u
14.	$ \begin{array}{c} 0 & \text{NC} & \text{NH}_2 \\ 0 & \text{O} & \text{NH} \\ 0 & \text{O} & \text{NH} \\ \text{HN} & \text{O} \\ 6d \end{array} $	275-279	275-277	14u
15.	NH ₂ CN O Sa	269-272	268-270	14t

16.	NH ₂ CN O Sb	246-248	245-246	14t
17.	NH ₂ CN CN O Sc	>300	>300	14d
18.	NH ₂ CN O Sd	278-280	270-272	14u

22.	NO ₂ O CN O NH ₂	241-243	241-243	15d
	10d			

References

14. (a) M. Lia, C. Duana, Y. Yub, D. Xu, *Dyes Pigm.* 2018, **150**, 202–206; (b) S. Sadjadi, Majid M. Heravi, M. Malmir, B. Masoumi, *Appl Organometal Chem.* 2018, **32**,4113-4125; (c) S. Nagaraju, B. Paplal, K. Sathish, S. Giri, D. Kashinath, *Tetrahedron Lett.*, 2017, **58**, 4200–4204; (d) M. Zhang, Q. Fu, G. Gao, H. He, Y. Zhang, Y. Wu, Z. Zhang, *ACS Sustainable Chem. Eng.*, 2017, **5**, 6175–6182; (e) S. Esmail S. Ebrahimi, S. M. Haghayegh-Zavareh, S. Bahadorikhalili, A. Yahya-Meymandi, M. Mahdavi, Mina Saeedi, *Synth. Commun.* 2017, **47**, 2324-2329; (f) T. Liu, C. B. Li, Y.-Q. Yu, D.-Z. Xu, *ChemistrySelect*, 2017, **2**, 2917-2921; (g) M. Esmaeilpour, J. Javidi, M. Divar, *J. Magn. Magn. Mater.* 2017, **423**, 232–240; (h) S. Sadjadia, M. M. Heravi, V. Zadsirjan, V. Farzaneh, *Appl. Surf. Sci.* 2017, **426**, 881–889; (i) E. Safari, A. Maryamabadi, A. Hasaninejad, *RSC Adv.*, 2017, 7, 39502-39511; (j) J. Sun, G. Shen, Y. Huang, C. Yan, *Sci. Rep.*, 2017, 7, Article number: 41024; (k) R. Jamatia, A. Gupta and A. K. Pal, *RSC Adv.*, 2016, 6, 20994-21000; (l) G. Khanna, K. Aggarwal, J. M. Khurana, *Synth. Commun.* 2016, **46**, 1880-1886; (m) D. N. Survase, H. V. Chavan, S. B. Dongare, V. B. Helavi, *Synth. Commun.* 2016, **46**, 1665-1670; (n) A. R. Moosavi-Zare , M. A. Zolfigol , E. Noroozizadeh , M. Zarei , R. Karamian , M. Asadbegy, 2016, *J. Mol. Catal. A: Chem.*, **425**, 217-228; (o) K. S. Pandit, P. V. Chavan, U. V. Desai, M. A. Kulkarnia, P. P. Wadgaonkar, *New J. Chem.*, 2015, **39**, 4452-4463; (p) P. Mukherjee, S. Paul, A. R. Das, *New J. Chem.*, 2015, **39**, 9480-9486; (q) D. M. Pore , P. B. Patil, D. S. Gaikwad, P. G. Hegade, J. D. Patil, K. A. Undale, *Tetrahedron Lett.*, 2014, **53**, 5876-5878; (r) N. Azizi, S. Dezfooli, M. M. Hashemi, *J. Mol Liq.*, 2014, **194**, 62–67; (s) P. Saluja, K. Aggarwal, J. M. Khurana, *Synth. Commun.*, 2013, **43**, 3239-3246; (t) H. R. Safaei, M. Shekouhy, S. Rahmanpur, A. Shirinfeshan, *Green Chem.*, 2012, **14**, 1696-1704; (u) J. M. Khurana, S. Yadav, *Aust. J. Chem.* **2012**,