Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Ethanol-Mediated N-Formylation of Amines with CO₂/H₂ over Cobalt Catalysts

Zhenghui Liu,^{‡a, b} Zhenzhen Yang,^{‡a} Zhengang Ke,^{a, b} Xiaoxiao Yu,^{a, b} Hongye Zhang,^a Bo Yu,^a Yanfei Zhao^a and Zhimin Liu^{*a, b}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100049, China.

Table of Contents

1.	Reaction conditions screening for the reaction of 1a with CO ₂ /H ₂	2
Tabl	le S1	2
Tabl	le S2	3
Tabl	le \$3	3
Tabl	le S4	4
Tabl	le S5	4
Tabl	e S6	5
Tabl	e S7	5
Tabl	le S8	6
2.	NMR spectra for the determination of HCOOH, CH ₃ OH and GC spectra for the	
dete	rmination of CO ₂ and H ₂	7
3.	Yields determination and characterization of the formamide products from amines and	
CO_2	/H ₂	9
4.	NMR and EI-MS spectra of the formamide products from amines and CO ₂ /H ₂	.13
5.	Reference	.46

1. Reaction conditions screening for the reaction of 1a with CO_2/H_2

	$Co(CIO_4)_2 \cdot 6H_2O 5 \text{ mol}\%$, Ligand 5 mol		
1a	K ₃ PO ₄ 1 mmol	, THF 3 mL 22	
Entry	Ligand	2a Yield/% ^b	3a Yield/% ^b
1	PP ₃	69	28
2	triphos	3	4
3	dpp-BINAP	1	1
4	dpp-OPh	1	0
5	dppb	25	5
6	dppe	6	2
7	$P(PhF_5)_3$	1	0
8	$P(4-FPh)_3$	0	0
9	Cydpp	3	0
10	PPh ₃	1	2
11	Bipy	1	0
12	DBU	1	1
13	Im	1	3

Table S1	Effect of	ligands	in	THF ^a

^a Reaction conditions: **1a** 1 mmol, Co(ClO₄)₂·6H $_2$ O 5 mol%, ligand 5 mol%, K $_3$ PO₄ 1 mmol, CO₂ 3 MPa, H $_2$ 3 MPa, THF 3 mL, oil bath 140 ^oC, 24 h. ^b Determined by GC using dodecane as an internal standard.

	$Co(CIO_4)_2$ $^{\bullet}6H_2O$ 5 mol%,	PP ₃ 5 mol%	
1a	K ₃ PO ₄ , EtOH 3 mL		$\frac{1}{2a}$ H $3a$
Entry	Со	2a Yield/% ^b	3a Yield/% ^b
1	Co(ClO ₄) ₂ ·6H ₂ O	80	15
2	Co(BF ₄) ₂ ·6H ₂ O	71	15
3	Co(NO ₃) ₂ ·6H ₂ O	68	10
4	Co(OAc) ₂ ·4H ₂ O	62	18
5	$Co(acac)_2$	48	32
6	CoCl ₂ ·6H ₂ O	70	17
0			

Table S2 Effect of Co species in EtOH^a

^a Reaction conditions: **1a** 1 mmol, Co species 5 mol%, PP_3 5 mol%, K_3PO_4 1.5 mmol, EtOH 3 mL, CO_2 3 MPa, H_2 3 MPa, 140 °C, 24 h. ^b Determined by GC using dodecane as an internal standard.

Table S3	B Effect	of base	in	EtOH ^a
----------	----------	---------	----	-------------------

	$Co(CIO_4)_2$ 6H ₂ O 5 mol%, PP ₃ 5 mol%			
1a	K ₂ CO ₃ , EtOH 3 mL		$\frac{1}{2a}$ H $3a$	
Entry	Base	2a Yield/% ^b	3a Yield/% ^b	
1	K ₃ PO ₄	80	15	
2	Na ₃ PO ₄	64	10	
3	K ₂ HPO ₄	66	15	
4	KH ₂ PO ₄	28	15	
5	КОН	58	22	
6	KOBu-t	63	17	
7	KF	48	30	
8	K_2CO_3	95	<1	
9	KOAc	62	23	
10	KClO ₄	10	13	
^a D (' 1'('	1 1 1 (010) (U			

^a Reaction conditions: **1a** 1 mmol, Co(ClO₄)₂·6H ₂O 5 mol%, PP₃ 5 mol%, Base 1.5 mmol, EtOH 3 mL, CO₂ 3 MPa, H₂ 3 MPa, 140 °C, 24 h. ^b Determined by GC using dodecane as an internal standard.

	Co(ClO ₄) ₂ •6H ₂ O 5 mol%, P	PP ₃ 5 mol%		
1a	K ₂ CO ₃ , EtOH 3 mL	2 0 2a		
Entry	T/°C	2a Yield/% ^b	3a Yield/% ^b	
1	140	95	<1	
2	120	79	10	
3	100	57	16	
4	80	39	5	
5	60	16	2	
3				

Table S4 Effect of temperature in EtOH^a

^a Reaction conditions: **1a** 1 mmol, $Co(ClO_4)_2 \cdot 6H_2O 5 mol\%$, PP₃ 5 mol%, K₂CO₃ 1.5 mmol, EtOH 3 mL, CO₂ 3 MPa, H₂ 3 MPa, 24 h. ^b Determined by GC using dodecane as an internal standard.

```
Table S5 Effect of base in THF<sup>a</sup>
```

$Co(ClO_4)_2$ 6H ₂ O 5 mol%, PP ₃ 5 mol% \sim O					
1a	$-00_2 + 1_2$	Base 1 mmol, THF 3 mL			
Ĩŭ			24 54		
Entry	Base	2a Yield/% ^b	3a Yield/% ^b		
1	K ₃ PO ₄	28	69		
2	K ₂ HPO ₄	29	15		
3	KH ₂ PO ₄	0	20		
4	КОН	0	40		
5	KOt-Bu	2	24		
6	KF	0	26		
7	K_2CO_3	39	16		
8	KOAc	20	45		
9	KNO ₃	16	11		
10	KClO ₄	17	11		
11	KBr	14	14		
12	Na ₃ PO ₄	17	37		
13	NaOH	23	25		
14	LiOH	19	13		
15	CsOH	21	38		
16	Li ₂ CO ₃	4	33		
17	Na ₂ CO ₃	20	15		
18	Cs_2CO_3	18	36		
19	NaOAc	23	44		
20	LiOAc	16	19		
21	CsOAc	28	45		

^a Reaction conditions: **1a** 1 mmol, $Co(ClO_4)_2 \cdot 6H_2O 5 mol\%$, PP₃ 5 mol%, Base 1 mmol, CO₂ 3 MPa, H₂ 3 MPa, THF 3 mL, oil bath 140 °C, 24 h. ^b Determined by GC using dodecane as an internal standard.

		-		
	$Co(CIO_4)_2 \cdot 6H_2O 5 \text{ mol}\%, PP_3 5 \text{ mol}\%$		$- O_{2a} N - H + O_{3a} N - Me$	
1a	K ₃ PO ₄ , THF 3 mL			
Entry	K ₃ PO ₄ /mmol	T/°C	2a Yield/% ^b	3a Yield/% ^b
1	1.5	140	22	24
2	1	140	28	69
3	0.5	140	15	43
4	0.25	140	14	26
5	0.1	140	5	23
6	1	160	14	30
7	1	120	21	30
8	1	100	36	3

Table S6 Effect of base amount and reaction temperature in THF^a

^a Reaction conditions: **1a** 1 mmol, Co(ClO₄)₂·6H ₂O 5 mol%, PP₃ 5 mol%, K₃PO₄, CO₂ 3 MPa, H₂ 3 MPa, THF 3 mL, 24 h. ^b Determined by GC using dodecane as an internal standard.

	$NH + CO_2 + H_2 = \frac{Co(CIO_4)_2 \cdot 6H_2O \cdot 5 \text{ mol}\%, PP_3 \cdot 5 \text{ mol}\%}{K_3PO_4, \text{ THF 3 mL}}$		3 5 mol%		
1a			-	2a H	3a
Entry	CO_2	Total	Time/h	2a Yield/% ^b	3a Yield/% ^b
	pressure/MPa	pressure/MPa			
1	5	6	24	2	35
2	4	6	24	37	36
3	3	6	24	28	69
4	2	6	24	20	26
5	1	6	24	4	13
6	2	4	24	19	9
7	4	8	24	68	3
8	5	10	24	35	1
9	3	6	3	17	9
10	3	6	б	27	16
11	3	6	12	21	38
12	3	6	48	27	68
13	3	6	72	29	69
^a Reaction con	ditions: 1a 1 mmol	, $Co(ClO_4)_2 \cdot 6H_2O$	$5 \text{ mol}\%, \text{PP}_3$	5 mol%, K ₃ PO ₄ 1	mmol, THF 3
mL. ^b Determi	ned by GC using d	odecane as an inter	nal standard.		

Table S7 Effect of CO_2 and H_2 pressure and reaction time in THF^a

	Co(ClO ₄) ₂ ·6H ₂ O 5 mol%, PP ₃ 5 mol% K ₃ PO ₄ , THF 3 mL			
1a				
Entry	Additive/mmol	2a Yield/% ^b	3a Yield/% ^b	
1	DBU/1	42	22	
2	Yb(OTf) ₃ ·H ₂ O/0.1	43	<1	
3	triphos/0.05	29	13	
4	RuCl ₃ ·3H 2O/0.05	37	4	
5	BMImBr/1	51	4	
6	Mn power/1.2	52	27	
7	Zn power/1.2	71	14	
8	$B(PhF_5)_3/0.1$	52	16	
9 ^c	[P ₄₄₄₄][Im]/1	90	1	
10 ^c	n-Bu ₄ NF/1	89	12	
11	Pd/C/0.05	67	<1	
12	PhSiH ₃ /0.2	21	5	
13	betaine	28	9	

Table S8 Effect of additives in THF^a

^a Reaction conditions: **1a** 1 mmol, Co(ClO₄)₂·6H ₂O 5 mol%, PP₃ 5 mol%, K₃PO₄ 1 mmol, THF 3 mL, CO₂ 3 MPa, H₂ 3 MPa, 140 °C, 24 h. ^b Determined by GC using dodecane as an internal standard. ^c No base. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene, triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane, BMImBr = 1-butyl-3-methylimidazolium bromide,

 $\left[\begin{array}{c} N \\ N \\ N \end{array} \right]$ [P₄₄₄₄][Im]

2. NMR spectra for the determination of HCOOH, CH₃OH and GC spectra for the

determination of CO_2 and H_2

3. Yields determination and characterization of the formamide products from amines and

 CO_2/H_2

H 2a; N-Formylmorpholine; CAS No. 4394-85-8;¹ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (10:1) as eluent. Colourless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 3.17 (t, ³*J* = 5.2 Hz, 2H), 3.31 (t, ³*J* = 5.2 Hz, 2H), 3.41 (t, ³*J* = 4.4 Hz, 2H), 3.45 (t, ³*J* = 4.4 Hz, 2H), 7.81 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 38.89, 44.11, 64.75, 65.68, 159.39. M (C₅H₉NO₂) = 115.1, EI-MS found 115.0 [M], 86.0 [M-CHO].

 O^{\frown} H **2b**; N-Formylpiperidine; CAS No. 2591-86-8;¹ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (10:1) as eluent. Colourless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 1.40-1.50 (m, 4H), 1.55-1.61 (m, 2H), 3.21 (t, ³*J* = 5.2 Hz, 2H), 3.37 (t, ³*J* = 5.6 Hz), 7.89 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 24.41, 24.81, 26.30, 40.34, 46.56, 160.56. M (C₆H₁₁NO) = 113.1, EI-MS found 113.0 [M], 84.0 [M-CHO].

O[−] H **2c**; 1-Formyl-4-methylpiperazine; CAS No. 7556-55-0;¹ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (10:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 2.29 (s, 3H), 2.34 (t, ³*J* = 4.8 Hz, 2H), 2.38 (t, ³*J* = 4.8 Hz, 2H), 3.37 (t, ³*J* = 4.4 Hz, 2H), 3.54 (s, 2H), 8.00 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 39.80, 45.47, 46.07, 54.17, 55.34, 160.66. M (C₆H₁₂N₂O) = 128.1, EI-MS found 128.0 [M], 113.0 [M-CH₃], 99.0 [M-CHO].

2d; N-Formylpyrrolidine; CAS No. 3760-54-1;¹ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (10:1) as eluent. Colourless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 1.65-1.70 (m, 4H), 3.16 (t, ³J = 6.4 Hz, 2H), 3.27 (t, ³J = 6.4 Hz, 2 H), 8.01 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 22.07, 22.77, 40.71, 43.58, 158.31. M (C₅H₉NO) = 99.1, EI-MS found 99.0 [M], 71.0 [M-C=O].

Derived States and St

chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR

(CDCl₃, 400 MHz) δ 1.56 (s, 4H), 1.69-1.72 (m, 4H), 3.35 (t, ${}^{3}J$ = 6 Hz, 2H), 3.43 (t, ${}^{3}J$ = 6 Hz, 2H), 8.06 (s, 1H); 13 C NMR (CDCl₃, 100.6 MHz) δ 26.81, 26.91, 27.89, 30.21, 43.35, 47.64, 162.81. M (C₇H₁₃NO) = 127.1, EI-MS found 127.0 [M], 98.0 [M-CHO].

O H **2f**; N,N-di-n-propylformamide; CAS No. 6282-00-4;³ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (10:1) as eluent. Colourless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 0.72-0.76 (m, 6H), 1.38-1.45 (m, 4H), 3.02 (t, ³J = 7.2 Hz, 2H), 3.10 (t, ³J = 7.6 Hz, 2H), 7.90 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 10.51, 10.92, 20.17, 21.45, 43.35, 48.76, 162.39. M (C₇H₁₅NO) = 129.2, EI-MS found 129.1 [M], 100.0 [M-CHO].

O H 2g; N,N-dihexylformamide; CAS No. 14287-94-6;⁴ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 0.84-0.86 (m, 6H), 1.25 (s, 12H), 1.47-1.48 (m, 4H), 3.14 (t, ³*J* = 7.2 Hz, 2H), 3.23 (t, ³*J* = 7.2 Hz, 2H), 7.99 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 13.83, 13.87, 22.41, 22.44, 26.04, 26.51, 27.17, 28.54, 31.27, 31.42, 42.02, 47.34, 162.54. M (C₁₃H₂₇NO) = 213.2, EI-MS found 213.1 [M], 198.1 [M-CH₃], 184.1 [M-CHO].

 $M_4 N M_4$

2h; N-methyl-N-benzylformamide; CAS No. 17105-71-4;⁵ Purification by column chromatography on silica gel using petroleum ether/ethyl acetate (50:1) as eluent. Yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 2.78, 2.84 (s, 3H), 4.39 (s, 1H), 4.52 (s, 1H), 7.19-7.37 (m, 5H), 8.16, 8.28 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 29.42, 33.98, 47.75, 53.45, 127.36, 127.60, 128.06, 128.22, 128.66, 128.87, 135.77, 136.03, 162.52, 162.69. M (C₉H₁₁NO) = 149.1, EI-MS found 149.1 [M], 134.0 [M-CH₃], 120.1 [M-CHO].

O H 2i; N-methyl-N-[(4-methylphenyl)methyl]formamide; CAS No. 54410-77-4; Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 2.32, 2.34 (s, 3H), 2.76, 2.82 (s, 3H), 4.34, 4.47 (s, 2H), 7.07-7.17 (m, 4H), 8.13, 8.26 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 21.01, 29.28, 33.88, 47.42, 53.18, 127.33, 128.21, 129.28, 129.49, 132.65, 132.97, 137.27, 137.81, 162.44, 162.61. M (C₁₀H₁₃NO) = 163.2, EI-MS found 163.0 [M], 148.0 [M-CH₃], 134.0 [M-CHO].

Cl O H **2j**; N-methyl-N-[(4-chlorophenyl)methyl]formamide; CAS No. 104936-73-4; Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 2.69, 2.77 (s, 3H), 4.29, 4.41 (s, 2H), 7.06-7.29 (m, 4H), 8.07, 8.20 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 29.37, 33.96, 47.11, 52.76, 128.70, 128.82, 129.07, 129.57, 133.49, 133.99, 134.26, 134.57, 162.52, 162.59. M (C₉H₁₀ClNO) = 183.0, EI-MS found 182.9 [M], 167.8 [M-CH₃], 147.9 [M-Cl], 139.9 [M-CH₃-CO]. **2k**; N,N-dibenzylformamide; CAS No. 5464-77-7;⁶ Purification by column chromatography on silica gel using petroleum ether/ethyl acetate (100:1) as eluent. Yellow solid; ¹H NMR (CDCl₃, 400 MHz) δ 4.26 (s, 2H), 4.41 (s, 2H), 7.16-7.39 (m, 10 H), 8.42 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 44.67, 50.24, 127.63, 127.68, 128.11, 128.50, 128.66, 128.89, 135.65, 136.03, 162.78. M (C₁₅H₁₅NO) = 225.1, EI-MS found 225.1 [M], 134.0 [M-C₇H₇].

(C₅H₁₁NO) = 101.1, EI-MS found 101.1 [M], 100.1 [M-H], 86.0 [M-CH₃], 72.0 [M-CHO].

^H **2m**; N-pentylformamide; CAS No. 2591-79-9;⁸ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 0.82-0.86 (m, 3H), 1.26-1.28 (m, 4H), 1.44-1.51 (m, 2H), 3.19-3.25 (m, 2H), 8.09 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 13.80, 22.15, 28.86, 29.02, 38.03, 161.26. M (C₆H₁₁NO) = 115.2, EI-MS found 115.0 [M], 100.0 [M-CH₃], 86.0 [M-CHO].

^H **2n**; N-hexylformamide; CAS No. 2591-78-8;¹ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 0.85-0.89 (m, 3H), 1.24-1.34 (m, 6H), 1.46-1.53 (m, 2H), 3.24-3.31 (m, 2H), 5.71 (s, 1H), 8.14 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 13.93, 22.48, 26.46, 29.44, 31.36, 38.16, 161.12. M (C₇H₁₅NO) = 129.2, EI-MS found 129.0 [M], 114.0 [M-CH₃], 100.0 [M-CHO].

20; N-*sec*-butylformamide; CAS No. 53798-89-3;⁹ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 0.91 (t, ³J = 6.8 Hz, 3H), 1.14 (d, ³J = 6.4 Hz, 3H), 1.40-1.55 (m, 2H), 3.96-4.03 (m, 1H), 5.44 (s, 1H), 8.13 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 10.22, 20.37, 29.54, 45.47, 160.52. M (C₅H₁₁NO) = 101.1, EI-MS found 101.0 [M], 86.0 [M-CH₃], 72.0 [M-CHO].

∽_NH →_H

D 2p; N-cyclopentylformamide; CAS No. 41215-40-1;⁵ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (20:1) as eluent. Colourless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 1.38-1.44 (m, 2H), 1.58-1.70 (m, 4H), 1.95-2.01 (m, 2H), 4.23-4.31 (m, 1H), 5.65 (s, 1H), 8.08 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 23.60, 33.01, 34.05, 49.91, 53.53, 160.76. M (C₆H₁₁NO) = 113.1, EI-MS found 113.0 [M], 83.9 [M-CHO].

2q; N-cyclohexylformamide; CAS No. 766-93-8;⁵ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (20:1) as eluent. Colourless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 1.11-1.40 (m, 6H), 1.68-1.73 (m, 2H), 1.86-1.94 (m, 2H), 3.81-3.89 (m, 1H), 5.54 (s, 1H), 8.09 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 24.70, 25.40, 33.02, 34.68, 47.05, 50.90, 160.23. M (C₇H₁₃NO) = 127.1, EI-MS found 127.0 [M], 97.9 [M-CHO], 84.0 [M-NCHO].

2r; N-benzylformamide; CAS No. 6343-54-0;¹⁰ Purification by column

chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 4.42 (d, ³J = 8 Hz, 2H), 6.39 (s, 1H), 7.24-7.32 (m, 5H), 8.17 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 42.11, 127.63, 127.75, 128.75, 137.67, 161.22. M (C₈H₉NO) = 135.1, EI-MS found 135.0 [M], 106.0 [M-CHO].

2s; N-(4-methylbenzyl)formamide; CAS No. 90609-66-8;¹ Purification by

column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H), 4.38 (d, ³*J* = 5.6 Hz, 2H), 7.11-7.16 (m, 4H), 8.17 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.96, 41.76, 127.64, 129.28, 134.54, 137.20, 161.02. M (C₉H₁₁NO) = 149.2, EI-MS found 148.9 [M], 133.9 [M-CH₃], 119.9 [M-CHO].

Cl 2t; N-(4-chlorobenzyl)formamide; CAS No. 86386-67-6;¹⁰ Purification by column chromatography on silica gel using CH₂Cl₂/CH₃OH (50:1) as eluent. Light yellow liquid; ¹H NMR (CDCl₃, 400 MHz) δ 4.43 (d, ³J = 8.0 Hz, 2H), 6.04 (s, 1H), 7.19-7.22 (m, 2H), 7.28-7.32 (m, 2H), 8.25 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 41.44, 128.87, 129.09, 133.50, 136.15, 160.95. M (C₈H₈ClNO) = 169.0, EI-MS found 169.0 [M], 140.0 [M-CHO] 134.0 [M-Cl].

3f; N-methyl-N-propylpropan-1-amine; CAS No. 3405-42-3;¹² Purification by column chromatography on silica gel using petroleum ether/ethyl acetate/triethylamine (10:1:0.05) as eluent. Colorless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 0.84-0.88 (t, 6H), 1.40-1.50 (m, 4H), 2.17 (s, 3H), 2.22-2.27 (t, 4H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 11.90, 20.45, 42.30, 59.87. EI-MS found 115.2 [M], 86.1 [M-CHO].

3h; N,N-dimethylbenzylamine

3h; N,N-dimethylbenzylamine; CAS No. 103-83-3;¹² Purification by column

chromatography on silica gel using petroleum ether/ethyl acetate/triethylamine (10:1:0.05) as eluent. Colorless liquid; ¹H NMR (CDCl₃, 400 MHz) δ 2.27 (s, 6H), 3.45 (s, 2H), 7.29-7.35 (m, 5H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 45.31, 64.36, 126.98,128.17, 129.05, 138.80. EI-MS found

4. NMR and EI-MS spectra of the formamide products from amines and CO₂/H₂

5. Reference

- 1 P. Daw, S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-David and D. Milstein, ACS Catal., 2017, 2500-2504.
- 2 H. Liu, Q. Mei, Q. Xu, J. Song, H. Liu and B. Han, *Green Chem.*, 2017, **19**, 196-201.
- 3 Z. Yang, H. Wang, G. Ji, X. Yu, Y. Chen, X. Liu, C. Wuand Z. Liu, *New J. Chem.*, 2017, **41**, 2869-2872.
- 4 S. Zhang, Q. Mei, H. Liu, H. Liu, Z. Zhang and B. Han, RSC Adv., 2016, 6, 32370-32373.
- 5 Y. Wang, J. Zhang, H. Chen, Z. Zhang, C. Zhang, M. Li and F. Wang, *Green Chem.*, 2017, **19**, 88-92.
- 6 X. Frogneux, O. Jacquet and T. Cantat, Catal. Sci. Technol., 2014, 4, 1529-1533.
- 7 L. Zhang, Z. Han, X. Zhao, Z. Wang and K. Ding, Angew. Chem. Int. Ed., 2015, 54, 6186-6189.
- 8 S. Kar, A. Goeppert, J. Kothandaraman and G. K. S. Prakash, ACS Catal., 2017, 7, 6347-6351.
- 9 L. González-Sebastián, M. Flores-Alamo and J. J. Garciá, Organometallics, 2013, 32, 7186-7194.
- 10 T. Mitsudome, T. Urayama, S. Fujita, Z. Maeno, T. Mizugaki, K. Jitsukawa and K. Kaneda, *ChemCatChem*, 2017, **9**, 3632-3636.
- 11 V. Thakur, A. Kumar, N. Sharma, A. K. Shil and P. Das, *Advanced Synthesis & Catalysis*, 2018, **360**, 432-437.
- 12 Z. Liu, Z. Yang, X. Yu, H. Zhang, B. Yu, Y. Zhao and Z. Liu, *Adv. Synth. Catal.*, 2017, **359**, 4278-4283.