Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Efficient exfoliation and dispersion of hBN nanoplatelets: advanced application

on waterborne anticorrosion coatings

Hongran Zhao¹, Jiheng Ding¹, and Haibin Yu^{*}

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine

Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,

Chinese Academy of Sciences, Ningbo 315201, China

Corresponding author: dingjh@nimte.ac.cn (J.-H. DING), haibinyu@nimte.ac.cn (H.-B. YU)

¹ These authors contributed equally to this work.

Table S1. Elemental Composition (wt %) of the Q235 steel based on the tests of						
EDS.						
В	С	О	Si	Cr	Mn	Fe
0.55	5.43	0.54	0.81	0.03	0.42	Bal.

Figure S1.The TEM (a) and HRTEM (b) images of BNQDs. Scale bar: a, 10 nm; b, 2 nm.

Figure S2.The AFM (a) and corresponding high distributions (b) of BNQDs. Scale bar: 2 μ m.

Figure S3. The excitation-dependent PL emission behavior of BNQDs, excited at wavelengths from 290 to 380 nm.

Figure S4. Digital images of hBN (a) and BNQDs/hBN (b) water dispersions (3 mg/mL).

Figure S5. The Potentiodynamic polarization curves and corrosion parameters of bare Q235.

Figure S 6. The $CPE_c(a)$ and $CPE_{dl}(b)$ of different coatings, respectively.

Figure S 7. The surface roughness for the Q235 carbon steel after 60 days of immersion in 3.5 wt.% NaCl_(aq): bare steel before (a) and after (b) immersion, (c) pure WEP, (d) BNQDs@hBN_{0.1}, (e) BNQDs@hBN_{0.2}, and (f) BNQDs@hBN_{0.5}, respectively.