Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

# **Supplementary**

### A multi-analyte responsive chemosensor vanilinyl Schiff base: fluorogenic

## sensing to Zn(II), Cd(II) and I-<sup>†</sup>

Rakesh Purkait, Sunanda Dey and Chittaranjan Sinha\*



Fig. S1 MS of  $H_3L$ 



Fig. S2 <sup>1</sup>H NMR of H<sub>3</sub>L in CDCl<sub>3</sub>



Fig.S3 IR of  $H_3L$ 



Fig.S4: Interferences study by various metal ions on Zn<sup>2+</sup> sensitivity



Fig.S5: Interferences study by various metal ions on Cd<sup>2+</sup> sensitivity



Fig.S6 Effect of pH variation on Zn<sup>2+</sup> sensitivity



Fig.S7 Effect of pH variation on Cd<sup>2+</sup> sensitivity

#### **Determination of detection limit:**

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of H<sub>3</sub>L without any analyte was measured by 10 times. The limit of detection (LOD) of H<sub>3</sub>L for Zn<sup>2+</sup> and Cd<sup>2+</sup> was determined from the following equation: LOD = K ×  $\sigma$  Where K = 3 in this case and  $\sigma$  = (Sb<sub>1</sub>)/(S); Sb<sub>1</sub> is the standard deviation of the blank solution; S is the slope of the calibration curve. For Zn<sup>2+</sup>, From the graph we get slope = 2.478×10<sup>8</sup>, and Sb<sub>1</sub>value is 0.2257(Fig. S8).Thus using the formula we get the LOD =

2.7×10<sup>-9</sup> M. For Cd<sup>2+</sup>, From the graph we get slope =  $2.478 \times 10^8$ , and Sb<sub>1</sub>value is 0.2312 (Fig. S9).Thus using the formula we get the LOD =  $6.6 \times 10^{-9}$  M.



Fig S8 LOD plot for Zn<sup>2+</sup>



Fig S9 LOD plot for Cd<sup>2+</sup>

| Serial<br>No. | Probe | Sensitivity                         | LOD                          | Reference |
|---------------|-------|-------------------------------------|------------------------------|-----------|
| 1             |       | Zn <sup>2+</sup>                    | 6.7 × 10 <sup>-6</sup><br>M. | 8         |
| 2             |       | Zn <sup>2+</sup>                    | 62 × 10 <sup>-9</sup> M      | 39        |
| 3             |       | Zn <sup>2+</sup>                    | -                            | 45        |
| 4             |       | Zn <sup>2+</sup>                    | 1.3 × 10-7 M                 | 46        |
| 5             |       | Zn <sup>2+</sup>                    | 5 ×10 <sup>-6</sup> M        | 47        |
| 6             |       | Zn <sup>2+</sup> , Cd <sup>2+</sup> | -                            | 48        |

**Table S1.** Comparison of LOD of similar type fluorogenic probe to  $Zn^{2+}/Cd^{2+}$ 

| 7   | N                                     | Zn <sup>2+</sup> , Cd <sup>2+</sup>                   | 1.84 ×10-7M,            | 49 |
|-----|---------------------------------------|-------------------------------------------------------|-------------------------|----|
|     |                                       |                                                       | 1.76 ×10-7M             |    |
|     |                                       |                                                       |                         |    |
|     | Ĭ                                     |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
| 8   | $\square$                             | Zn <sup>2+</sup> , Cd <sup>2+</sup> ,Cu <sup>2+</sup> | -                       | 50 |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
| Q   |                                       | $7n^{2+}$ Cd <sup>2+</sup>                            | 0.61 X 10-              | 51 |
| 9   |                                       | 211 , Cu                                              | $^{6}M, 0.53 \times$    | 51 |
|     |                                       |                                                       | $10^{-6}$ M             |    |
|     | Ŭ Ŭ N                                 |                                                       |                         |    |
| 10  |                                       | Zn <sup>2+</sup>                                      | $1.6 \times 10^{-6} M$  | 52 |
|     |                                       |                                                       |                         |    |
|     | N                                     |                                                       |                         |    |
|     | 0 NH                                  |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     | NH <sub>2</sub>                       |                                                       |                         |    |
| 11  |                                       | Cd <sup>2+</sup>                                      | $9.6 \times 10^{-12} M$ | 53 |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
| 12  |                                       | Cd <sup>2+</sup>                                      | $22 \times 10^{-9}$ M   | 54 |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
|     |                                       |                                                       |                         |    |
| 12  |                                       | Cd <sup>2+</sup>                                      | 5×10-4 M                | 55 |
| 1.5 |                                       | Cu                                                    | JAIU IVI                |    |
|     | С С С С С С С С С С С С С С С С С С С |                                                       |                         |    |
|     | HO N H                                |                                                       |                         |    |
|     |                                       |                                                       |                         |    |





Fig.S10The Job's plot obtained by fluorescence experiment for  $Zn^{2+}$ 



Fig. S11 The Job's plot obtained by fluorescence experiment for Cd<sup>2+</sup>

#### **Determination of binding constant :**

The binding constant value of Zn<sup>2+</sup> and Cd<sup>2+</sup> with H<sub>3</sub>L has been determined from the emission intensity data following the modified Benesi–Hildebrand equation,  $1/\Delta F = 1/\Delta F_{max}+(1/K[C])(1/\Delta F_{max})$ . Here  $\Delta F = F-F_{min}$  and  $\Delta F_{max} = F_{max}-F_{min}$ , where  $F_{min}$ , F, and  $F_{max}$  are the emission intensities of H<sub>3</sub>L considered in the absence of ions, at an intermediate ions concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the anions concentration respectively. In this report we represent  $F_{min}$  as F<sub>0</sub>. From the plot of  $(F_{max}-F_0)/(F-F_0)$  against [C]<sup>-1</sup> for ions, the value of K has been determined from the slope. The association constant (K<sub>d</sub>) as determined by fluorescence titration method for H<sub>3</sub>L with Zn<sup>2+</sup> is found to be 2.7 × 10<sup>4</sup> M<sup>-1</sup> (error < 10%) and for H<sub>3</sub>L with Cd<sup>2+</sup> is found to be 0.96 × 10<sup>4</sup> M<sup>-1</sup> (error<10%).



Fig.S12 Benesi–Hildebrand plot for addition of  $Zn^{2+}$  with  $H_3L$ 



Fig. S13 Benesi–Hildebrand plot for addition of  $Cd^{2+}$  with  $H_3L$ 









Fig.S16: 1H NMR titration of  $H_3L$  with  $Zn^{2+}$  in DMSO-d<sub>6</sub>



**Fig.S17: 1H** NMR titration of H3L with  $Cd^{2+}$  in DMSO-d<sub>6</sub>



Fig. S18 Fluorimetric titration determines the binding constant for I<sup>-</sup> (Benesi–Hildebrand plot)



Fig. S19: ESI-MS spectrum of H<sub>3</sub>L-I<sup>-</sup>



**Fig. S20:** LOD plot for  $I^{-}$ 

| Table S2: | Comparison | of Iodide (I-) | sensor efficiency |
|-----------|------------|----------------|-------------------|
|-----------|------------|----------------|-------------------|

| Serial No. | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOD                          | Reference |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |
| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.2 \times 10^{-6}$         | 14        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | М                            |           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |
| 2          | The second secon | 22.6 × 10 <sup>-9</sup><br>M | 59        |





Fig.S21: Interferences study by various metal ions on I- sensitivity



Fig. S22 Effect of pH variation on I<sup>-</sup> sensitivity



Table S3 optimised structure and bond parameters of H<sub>3</sub>L-Zn<sup>2+</sup>

Table S4 optimised structure and bond parameters of H<sub>3</sub>L-Cd<sup>2+</sup>

| Optimized structure of H <sub>3</sub> L-Cd <sup>2+</sup> complex | Bond Length    | Bond angle              |
|------------------------------------------------------------------|----------------|-------------------------|
|                                                                  | Cd(58) - O(5), | O(5) - Cd(58) - N(8),   |
|                                                                  | 2.22 Å         | 74.4°                   |
|                                                                  | Cd(58) - N(8), | N(8) - Cd(58) - O(16),  |
|                                                                  | 2.41 Å         | 72.55°                  |
|                                                                  | Cd(58) -       | O(16) - Cd(58) - O(17), |
| Cd 58                                                            | O(16), 2.29 Å  | 114.79°                 |
| 0 17 O 16                                                        | Cd(58) -       | O(17) - Cd(58) - N(6),  |
|                                                                  | O(17), 2.23 Å  | 86.45°                  |
|                                                                  | Cd(58) - N(6), | N(6) - Cd(58) - O(5),   |
|                                                                  | 2.36 Å         | 78.14°                  |
|                                                                  |                |                         |

| Optimise structure of H <sub>3</sub> L-I <sup>-</sup> complex | Bond Length    | Bond angle             |
|---------------------------------------------------------------|----------------|------------------------|
|                                                               | I(59) - H(39), | H(39) - I(59) - H(42), |
| في وف                                                         | 3.88 Å         | 42.01°                 |
|                                                               | I(59) - H(42), | H(42) - I(59) - H(51), |
|                                                               | 3.10 Å         | 42.67°                 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                        | I(59) - H(51), | H(51) - I(59) - H(50), |
| H 39 0                                                        | 2.57 Å         | 167.58°                |
| H 43 H 42                                                     | I(59) - H(50), | H(50) - I(59) - H(43), |
| H51                                                           | 2.78 Å         | 37.82°                 |
| H 50 159                                                      |                |                        |
|                                                               | I(59) - H(43), | H(43) - I(59) - H(39), |
|                                                               | 3.41 Å         | 69.74°                 |
|                                                               |                |                        |

Table S5 optimised structure and bond parameters of H<sub>3</sub>L-I<sup>-</sup>

 Table S6 comparison of experimental and theoretical transitions

| Ligand/Complex                  | Absorbance                 | Excitation | transitions                        |
|---------------------------------|----------------------------|------------|------------------------------------|
|                                 | wavelength                 | energy     |                                    |
| H <sub>3</sub> L                | $\lambda(\text{expt})$ 310 | 3.9915 eV  | (67%) HOMO- $4 \rightarrow$ LUMO   |
|                                 | $\lambda$ (theo) 310.62    |            |                                    |
| H <sub>3</sub> L                | $\lambda(\text{expt})$ 337 | 3.7883 eV  | (87%) HOMO-3→ LUMO                 |
|                                 | $\lambda$ (theo) 327.28    |            |                                    |
| H <sub>3</sub> L                | $\lambda(\text{expt})$ 350 | 3.5493 eV  | (87%) HOMO-1 $\rightarrow$ LUMO+1  |
|                                 | $\lambda$ (theo) 349.32    |            |                                    |
| H <sub>3</sub> L                | $\lambda(\text{expt})$ 380 | 3.2260 eV  | (56 %) HOMO-2→LUMO+1               |
|                                 | $\lambda$ (theo) 384.33    |            |                                    |
| H <sub>3</sub> L                | $\lambda(\text{expt})$ 394 | 2.9750 eV  | (92%) HOMO $\rightarrow$ LUMO      |
|                                 | $\lambda$ (theo) 416.75    |            |                                    |
| $H_3L$ - $Zn^{2+}$              | $\lambda(\text{expt})$ 425 | 2.9560 eV  | (91%) HOMO $\rightarrow$ LUMO      |
|                                 | $\lambda$ (theo) 422.37    |            |                                    |
| $H_3L$ - $Cd^{2+}$              | $\lambda(\text{expt}) 480$ | 2.6077 eV  | (89%) HOMO→LUMO                    |
|                                 | $\lambda$ (theo) 475.45    |            |                                    |
| H <sub>3</sub> L-I <sup>-</sup> | $\lambda(\text{expt})$ 555 | 2.1678 eV  | $(54\%)$ HOMO $\rightarrow$ LUMO+1 |
|                                 | $\lambda$ (theo) 571.94    |            |                                    |



Fig.S23 reversibility with anions of Zn complex



Fig. S24reversibility with anions of Cd complex



Fig. S25: Calibration plot between emission intensity of the probe  $H_3L$  at 545 nm vs  $Zn^{2+}$  ion for the quantitative analysis of  $Zn^{2+}$  ion in drinking water.



Fig. S26: Calibration plot between emission intensity of the probe  $H_3L$  at 560 nm vs Cd<sup>2+</sup> ion for the quantitative analysis of Cd<sup>2+</sup> ion in drinking water.