Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

New Journal of Chemistry

Melamine Formaldehyde - Metal Organic Gel Interpenetrating Polymer Network Derived Intrinsic Fe-N- Doped Porous Graphitic Carbon Electrocatalysts for Oxygen Reduction Reaction

Kottarathil Shijina,^{a,b} Rajith Illathvalappil,^{b,c} Sumitha N. S.,^dG. S. Sailaja,^{*d} Sreekumar Kurungot,^{b,c} Balagopal N. Nair,^{e,f} A. Peer Mohamed,^a Gopinathan M. Anilkumar,^e Takeo Yamaguchi^g and U. S. Hareesh^{*a,b}

^a Materials Science and Technology Division (MSTD), CSIR-National Institute for

Interdisciplinary Science and Technology (CSIR-NIIST)

Industrial Estate PO, Thiruvananthapuram, Kerala 695019, India

Email: hareesh@niist.res.in

- ^{b.}Academy of Scientific and Innovative Research, Delhi-Mathura Road, New Delhi 110025, India.
- ^{c.}Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
- ^d Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi- 682022, Kerala, India.

Email: sailajags@cusat.ac.in

^eR&D Centre, Noritake Company LTD, 300 Higashiyama, Miyoshi, Aichi 470-0293, Japan.

^fNanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia

^gLaboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan

Reference electrode calibration

Hg/HgO potential was converted to RHE using the following procedure. LSV was taken in hydrogen saturated 0.1 M KOH solution at a scan rate of 1 mV/s with Pt as the working electrode, Pt as the counter electrode and Hg/HgO as the reference electrode. From the plot of current Vs potential, the potential at which the current crosses the zero line was taken as the correction factor.


```
E (RHE) = E (Hg/HgO) + 0.870
```

Figure S1. Calibration curve of the Hg/HgO reference electrode in H_2 saturated 0.1 M KOH solution.

Figure S2. Raman spectra of Fe-MOG-MF-C and Fe-MOG-MFN-C.

Figure S3. XPS survey scan spectrum.

Figure S4. High resolution N 1s XPS spectra of (a) Fe-MOG-MFN-C-800 and (b) Fe-MOG-MFN-C-1000.

Figure S5. SEM images of Fe-MOG-C.

Figure S6. TEM images of Fe-MOG-C.

Figure S7. XRD pattern of Fe-MOG-C.

Figure S8. N_2 adsorption-desorption isotherms of Fe-MOG-C.

Figure S9. LSV comparison in O_2 saturated 0.1 M KOH solution measured at a scan rate of 5 mV sec⁻¹ at 1600 rpm.

Figure S10. Cyclic voltammograms of (a) Fe-MOG-MFN-C-800 and (b) Fe-MOG-MFN-C-1000 in 0.1 M KOH solution measured at a scan rate of 50 mV sec⁻¹ at 900 rpm.

Figure S11. LSVs of (a) Fe-MOG-MFN-C-800 (b) Fe-MOG-MFN-C-1000 (c) Fe-MOG-MF-C and (d) Pt/C in O_2 saturated 0.1 M KOH solution measured at different rotation rates at a scan rate of 5 mV sec⁻¹.

Figure S12. LSV recorded before and after 5000 cycles ADT analysis for Pt/C in O_2 saturated 0.1 M KOH solution with electrode rotation of 1600 rpm.

Table S1. Variation of concentration of different nitrogen species with pyrolysis temperature

Sample Name	Elemental conc (at.%)				N species at.%			
	С	0	Fe	N	pyridinic	pyrrolic	graphitic	Pyridinic N-O
Fe-MOG-MFN-C-800	88.9	7.1	0.1	2	0.57	0.29	1.14	-
Fe-MOG-MFN-C-900	88.59	8.13	0.13	2.93	0.57	-	1.97	0.38
Fe-MOG-MFN-C-1000	96	3.5	< 0.1	0.5	0.20	0.22	-	0.08