Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

High Capacity MoO₃/rGO nanocomposite anode for Lithium ion batteries:

An Intuition into Conversion Mechanism of MoO₃

Shivaraj B. Patil^a, Udayabhanu^a Brij Kishore^b, G. Nagaraju^a* and J. Dupont^d

^a Department of Chemistry, Siddaganga Institute of Technology (affiliated to Visvesvaraya Technological University, Belagavi), Tumakuru-572103, India.

^b Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru-560012, India.

^c WMG, University of Warwick, Coventry CV4 7AL, United Kingdom.

^dSchool of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

Fig S1: XRD patterns of different compositions of MoO₃- rGO composites

Fig S2: Thermogravimetric analysis of different compositions of MoO₃-rGO composites

Fig S3: N₂ adsoprtion –desorption isotherms of different composition of MoO₃-rGO

composites. [Inset: Pore size distribution]

Fig S4: Cycling performance of MoO₃ and different MoO₃- rGO composites at 0.1 C rate.