Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Zeolitic-Imidazolate-Framework (ZIF-8)/PEDOT: PSS Composite Counter Electrode for Low Cost and Efficient Dye-Sensitized Solar Cells

Abdelaal. S. A. Ahmed¹, Wanchun Xiang^{1*}, Ibrahim Saana Amiinu², Xiujian Zhao^{1*}

¹ State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Luoshi Road, Wuhan 430070, P. R. China

² State Key Laboratory of Advanced Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road, Wuhan 430070, P. R. China

*Corresponding authors:

Email: <u>xiangwanchun@whut.edu.cn</u> (W. Xiang), <u>opluse@whut.edu.cn</u> (X. Zhao)

1 Materials and reagents

All used reagents and solvents were obtained from commercial sources. Both of PEDOT:PSS (1.3 wt % dispersed in H₂O), lithium iodide (LiI, 99%), Iodine (I₂, 99.8%), 4-*tert*-butylpyridine (4-tBP, C₉H₁₃N, 96%), titanium di-isopropoxide bis (acetylacetonate) (TAA) [(CH₃)₂CHO]₂Ti (C₅H₇O₂)₂, 75 wt. % in isopropanol], bis (*tri*-Fluor methane) sulfonamide lithium salt (LiTFSI), hex chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O, 37.50% Pt basis), 2-methylimidazole (98.0%) and MK2 dye were purchased from Sigma-Aldrich, while Anhydrous acetonitrile (CH₃CN, 99.80%) , tert-butyl alcohol were from Alfa Aesar and Ru dye, cis-di (thiocyanato) bis (2, 2-bipyridyl-4, 4-dicarboxylate) ruthenium (II) (N719) from Dyesol. Titanium dioxide paste (average particle size: 18, 30 nm and 400 nm) and FTO conductive glass (2 mm thickness, square resistance 10–15 Ω sq⁻¹) from OPV Tech Co. Zn (NO₃)₂.6H₂O (~99.99%), were obtained and ethylene glycol (EG) from Sinopharm Chemical Reagent Beijing Co., Ltd. All used reagents were of analytical purity and used as received. De-ionized (DI) water was obtained from an ultra-pure purifier (Ulu pure, China, resistivity ≥ 18.2 MΩ).

2 Fabrication of Mesoporous TiO₂ photoanode

The iodine electrolyte-based DSSCs were prepared as follows; TiO_2 photoanodes was prepared by using fluorine-doped SnO₂ (FTO) conducting glass substrates, FTO washed with a detergent solution, rinsed with deionized (DI) water and finally ethanol in an ultrasonic bath for 30 min. A thin blocking layer of TiO₂ was prepared on a clean FTO glass via spray pyrolysis of a 10% (v/v) solution of titanium isopropoxide bis-acetylacetonate in ethanol at 450°C. A commercial TiO₂ Paste (18 nm-sized) was printed onto the treated FTO-titanium isopropoxide to form the transparent layer (4×4 mm). The printing process was repeated for five times followed by annealing at 120 °C for 10 min. A scattering layer was printed on top of the transparent layer. The screen-printed TiO₂ films with 0.16 cm² active area were sintered at 500 °C for 30 min in programmable system followed by treated in 20 mM TiCl₄ (aq) bath at 70 °C for 30 min, after cooled to room temperature, the nanocrystalline TiO₂ electrode the electrode was washed with distilled water and ethanol and fired again at 500°C in air for 30 min. Once cooled, the electrodes were bathed into a 0.3 mM solution of N-719 dye in absolute ethanol for 18 h in dark at room temperature.

In case of cobalt electrolyte-based DSSCs, TiO_2 photoanode was fabricated also by the same technique in iodine DSSCs except for TiO_2 paste (20 nm) was used in transparent layer with little thickness, the obtained TiO_2 films were immersed on 0.3 mM MK-2 dye solution (1:1 acetonitrile and tert-butanol) and keep in dark at room temperature for about 5 h.

The symmetrical dummy cells for both iodine and cobalt electrolyte based DSSCs were prepared by two identical CEs, and the redox electrolytes are similar to that used in assembling complete DSSCs.

Scheme S1: Schematics for the prepare of ZIF-8/PEDOT: PSS CEs.

Fig. S1: XRD of the as prepared ZIF-8

Fig. S2: (a) Nitrogen adsorption-desorption isotherms for ZIF-8 and (b) pore volume distribution.

Table S1. BET obtained	parameters for ZIF-8.
------------------------	-----------------------

BET surface area	BJH Desorption cumulative volume of	BJH Desorption average		
	pores	pore diameter (4V/A)		
1592.27 m ² . g ⁻¹	$0.11 \text{ cm}^3.\text{g}^{-1}$	56.95 A°		

Fig. S3: (a) CV curves of (3%)ZIF-8/PEDOT: PSS CE at different scan rate and (b) the relationship between peak current density and the square root of scan rates of (3%) ZIF-8/PEDOT: PSS CE.

Fig.S4: 20 times consecutive CVs of the (3%) ZIF-8/ PEDOT: PSS complex CE with a scan rate of 50 mVs⁻¹ in iodine-based electrolyte.

Fig. S5: (a) Equivalent circuit of Pt symmetric cell and (b) equivalent circuit of as prepared ZIF-8/ PEDOT: PSS based symmetric cells.

CEs	J _{PC} (mA m ⁻²)	E _{pp} (mV)	$J_{\text{ox}} / J_{\text{Red}} $	Log J _o (mAcm ⁻²)	R _{ct} Tafel	τ (μs)	D_n cm ⁻² s ⁻¹
Pristine PEDOT: PSS	-0.55	611	1.55	0.53	3.71	37.92	3.69×10 ⁻⁶
1% ZIF-8/ PEDOT: PSS	-0.67	504	1.54	0.71	2.45	35.64	8.23×10 ⁻⁶
3% ZIF-8/ PEDOT: PSS	-0.92	203	1.41	1.04	0.68	28.31	8.45×10 ⁻⁶
5% ZIF-8/ PEDOT: PSS	-0.68	335	1.62	0.66	2.72	28.31	8.02×10 ⁻⁶
Pt	-0.96	258	1.61	1.19	0.81	14.19	6.27×10 ⁻⁶

Table S2. Electrochemical parameters of symmetric dummy cells with iodine-based electrolyte

with different CEs

CEa	DSSCs	Voc	Jsc	FF	Eff
CES	(number)	mV	(mA/cm^2)	(%)	(%)
	Cell (1)	712	14.36	71.12	7.27
Pt	Cell (2)	712	13.58	74.30	7.20
	Cell (3)	713	13.70	74.16	7.24
	Average	712.3	13.88	73.19	7.24
	SD (±)	0.00	0.42	01.79	0.03
	Cell (1)	706	12.18	44.17	3.79
	Cell (2)	702	12.06	47.79	4.05
PEDOT: PSS	Cell (3)	703	12.05	49.27	4.18
	Average	704	12.10	47.08	4.00
	SD (±)	0.002	0.07	2.622	0.19
	Cell (1)	756	12.17	50.72	4.67
	Cell (2)	753	12.14	51.84	4.74
(1%) ZIF-8/PEDOT: PSS	Cell (3)	751	12.13	52.88	4.82
	Average	753	12.15	51.81	4.74
	SD (±)	0.002	0.025	1.082	0.076
	Cell (1)	780	13.78	60.02	6.46
(20/) ZIE 8/DEDOT: DSS	Cell (2)	782	13.80	60.30	6.51
(3%) ZIF-8/PEDOT: PSS	Cell (3)	782	13.63	60.92	6.49
	Average	781	13.74	60.40	6.49
	SD (±)	0.000	0.094	0.462	0.025
	Cell (1)	734	13.30	57.20	5.61
	Cell (2)	733	13.14	59.63	5.74
(5%) ZIF-8/PEDOT: PSS	Cell (3)	730	13.15	60.33	5.79
· · ·	Average	732	13.19	59.05	5.71
	SD (±)	0.004	0.083	1.643	0.09

Table S3. Photovoltaic performances of DSSCs with I^{-}/I_{3}^{-} redox couple electrolyte different CEs under AM1.5G illumination

SD: standard deviation

Fig. S6. Start-stop switches (a) of the DSSCs by alternately irradiating (100 mW.cm⁻²) and darkening (0 mW.cm⁻²) at an interval of 20 s and at 0 V, (b) the photocurrent stabilities of the DSSCs under continuous irradiation of 100 mW.cm⁻².

Cobalt electrolyte supplementary data

Table S4. Photovoltaic performances of DSSCs Co^{3+}/Co^{2+} electrolyte with different CEs under AM1.5G illumination.

	DSSCs	Voc	Jsc	FF	Eff
CES		mV	(mA/cm^2)	(%)	(%)
	Cell (1)	823	13.09	72.03	7.76
Pt	Cell (2)	818	12.8	69.9	7.32
	Cell (3)	806	12.86	73.3	7.60
	Average	816	12.92	71.74	7.56
	SD (±)	0.008	0.16	1.72	0.22
	Cell (1)	855	10.14	65.57	5.69
	Cell (2)	853	10.30	65.80	5.78
PEDOT: PSS	Cell (3)	850	10.43	65.73	5.83
	Average	853	10.30	65.70	5.77
	SD (±)	0.002	0.15	0.17	0.07
	Cell (1)	852	11.36	70.03	6.78
	Cell (2)	853	11.66	69.57	6.92
(1%) ZIF-8/PEDOT: PSS	Cell (3)	853	11.36	70.41	6.81
	Average	852	11.46	70.00	6.84
	SD (±)	0.000	0.17	0.42	0.07
	Cell (1)	859	9.54	66.78	5.48
(20/) TIE 0/DEDAT. DCC	Cell (2)	856	8.49	64.86	4.72
(3%) ZIF-8/PEDOT: PSS	Cell (3)	858	8.53	65.48	4.79
	Average	858	8.85	65.71	5.00
	SD (±)	0.000	0.59	0.98	0.42
	Cell (1)	855	8.43	68.75	4.95
(50/) THE 8/DEDOT: DOG	Cell (2)	856	8.56	69.18	5.07
(5%) ZIF-8/PEDOT: PSS	Cell (3)	856	8.56	69.18	5.07
	Average	856	8.52	69.04	5.03
	SD (±)	0.000	0.08	0.25	0.07

CEs J_{PC} (mA m⁻²) E_{pp} (mV) Log J_o R_s (Ω) R_{ct} (Ω) $J_{ox}/|J_{Red}|$ τ (mAcm-2) (µs) Pt -0.26 175 1.29 0.35 8.52 4.72 31.78 PEDOT: PSS 238 12.99 -0.22 1.75 0.69 28.18 23.55 (1%) ZIF-8/PEDOT: PSS -0.47 176 1.27 1.04 12.01 11.55 2.70 (3%) ZIF-8/PEDOT: PSS -0.43 189 1.20 0.66 13.69 12.34 3.03 (5%) ZIF-8/PEDOT: PSS -0.38 250 1.28 1.19 14.57 21.96 3.65

Table S5. Electrochemical parameters of symmetric dummy cells with cobalt based electrolyte with different CEs

b а 1.5 0.2 Current density $(mA \ cm^{-2})$ Current density (mA cm⁻²) 1.0 0.1 0.5 •10 mv Red 30 mv 0.0 0.0 50 mv Oxi •70 mv -0.1 100 mv -0.5 120 mv 150 mv -0.2 -1.0 200 mv 250 mv 300 mv -1.5 -1.0 -0.3 -0.5 0.0 10 12 14 18 0.5 1.0 2 4 6 8 16 $(\text{Scan rate})^{1/2} (\text{mV})^{1/2}$ Voltage (V vs Ag/Ag^+)

Fig. S7: 20 times consecutive CVs of the (1%) ZIF-8/ PEDOT: PSS complex CE with a scan rate of 50 mVs⁻¹ in cobalt-based electrolyte.

Fig. S8 A 20 consecutive CVs of the (1%) ZIF-8/ PEDOT: PSS complex CE with a scan rate of 50 mV s^{-1} in cobalt-based electrolyte.

Fig. S9 Start-stop switches (a) of the DSSCs by alternately irradiating (100 mW.cm⁻²) and darkening (0 mW.cm⁻²) at an interval of 20 s and at 0 V, (b) the photocurrent stabilities of the DSSCs under continuous irradiation of 100 mW.cm⁻².