Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Direct synthesis of alkynylphosphonates from alkynes and phosphite esters catalyzed by Cu/Cu₂O nanoparticles

supported on Nb₂O₅

Tao Yuan,^a Fei Chen $^{\rm b}$ and Guo-ping Lu $^{\rm a*}$

^a Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. China

^b Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Jiangwangmiao 8, Nanjing 210042, Jiangsu, China

* Corresponding Author E-mail: glu@njust.edu.cn

1 XRD spectra	
2 XPS spectra	2
3 ICP results	3
4 Raman and TEM images	3
5 Characterization Data	4
6 NMR Spectra of All Products	9

1 XRD spectra

Fig. S1 XRD images. (i) Recycled Cu/Cu₂O@Nb₂O₅; (ii) fresh Cu₂O@Nb₂O₅; (iii) Cu/Cu₂O NPs

2 XPS spectra

Fig. S2 XPS image of Cu/Cu₂O@SiO₂

3 ICP results

Table S1ICP results of Cu/Cu2O@Nb2O5

Sampling	Constant	Dilution	The amount of Cu	Content of Cu in the
quality (g)	volume/mL	multiple	(mg/L)	catalyst (wt.%)
0.0837	25	100	0.8986	2.68

4 Raman and TEM images

Fig. S3 Raman images. (i) Nb₂O₅; (ii) Cu/Cu₂O@Nb₂O₅.

Fig. S4 TEM and size distribution images. (a) Cu/Cu₂O@Nb₂O₅; (b) size distribution of Cu/Cu₂O NPs in the catalyst

5 Characterization Data

Diethyl (phenylethynyl)phosphonate^[1] **3a**, brown oil, (91%, 43 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60–7.56 (m, 2H), 7.50–7.44 (m, 1H), 7.42–7.37 (m, 2H), 4.25 (dqd, J = 8.5, 7.0, 1.3 Hz, 4H), 1.42 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 131.68, 129.73, 127.60, 118.61, 98.33, 97.91, 78.58, 62.31, 15.20, 15.15. GC-MS (EI) *m/z*: 238.

Diisopropyl (phenylethynyl)phosphonate^[1] **3b**, yellow oil, (93%, 49 mg). ¹H N MR (500 MHz, Chloroform-*d*) δ 7.63–7.57 (m, 2H), 7.52–7.47 (m, 1H), 7.45–7.39 (m, 2H), 4.87 (dp, J = 8.8, 6.2 Hz, 2H), 1.46 (dd, J = 6.2, 2.9 Hz, 12 H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 131.55, 129.53, 127.57, 118.93, 97.1 5 (d, J = 52.7 Hz), 78.97 (d, J = 297.9 Hz), 71.38, 22.97, 22.69. GC-MS (EI) m/z: 266.

Chemical Formula: C₁₃H₁₇O₃P Mass: 252

Diethyl (m-tolylethynyl)phosphonate^[1] **3c**, colorless oil, m.p. (76%, 38 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.37 (dd, J = 8.3, 3.2 Hz, 2H), 7.25 (d, J = 4.6 Hz, 2H), 4.26–4.17 (m, 4H), 2.34 (s, 3H), 1.40 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.45, 132.13, 130.65, 128.80, 127.49, 118.39, 98.66, 98.24, 78.20, 62.25, 20.19, 15.21, 15.16. GC-MS (EI) *m/z*: 252.

Diethyl ((4-cyanophenyl)ethynyl)phosphonate^[1] **3d**, light yellow oil, (79%, 42 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72–7.62 (m, 4H), 4.24 (h, *J* = 6.6, 5.6 Hz, 4H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 132.11, 131.25, 123.39, 116.77, 113.19, 95.14, 94.73, 82.73, 80.37, 62.60, 15.20, GC-MS (EI) *m/z*: 263.

Chemical Formula: C₁₄H₁₇O₅P Mass: 296

Methyl 4-((diethoxyphosphoryl)ethynyl)benzoate^[1] **3e**, light yellow oil, (92% 54 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.07–8.01 (m, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 4.31–4.18 (m, 4H), 3.96–3.87 (m, 3H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.03, 131.60, 130.82, 128.65, 127.72, 123.02, 96.70, 96.29, 81.19, 78.83, 62.47, 51.50, 15.21, 15.15. GC-MS (EI) *m/z*: 296.

Chemical Formula: C₁₇H₂₅O₃P Exact Mass: 308.1541 Elemental Analysis: C, 66.22; H, 8.17; O, 15.57; P, 10.04

Diethyl ((4-pentylphenyl)ethynyl)phosphonate **3f**, light yellow oil (76%, 47 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 4.25 (tt, J = 8.5, 6.4 Hz, 4H), 2.69–2.61 (m, 2H), 1.63 (p, J = 7.5 Hz, 2H), 1.43 (t, J = 7.1 Hz, 6H), 1.37–1.30 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 145.36, 131.67, 131.65, 127.72, 115.63, 98.93, 98.51, 77.96, 62.24, 62.20, 35.04, 30.41, 29.79, 21.50, 15.21, 15.15, 13.01. GC-MS (EI) *m/z*: 308. Anal. Calcd for C₁₇H₂₅O₃P: C, 66.22%; H, 8.17%. Found: C, 66.35%; H, 8.23%.

Chemical Formula: C₁₁H₁₄NO₃P Mass: 239

Diethyl (pyridin-3-ylethynyl)phosphonate^[2] **3g**, brown oil, (75%, 36 mg). ¹H N MR (500 MHz, Chloroform-*d*) δ 8.81 (d, J = 2.1 Hz, 1H), 8.69 (dd, J = 4.9, 1.7 Hz, 1H), 7.88 (dt, J = 7.9, 2.0 Hz, 1H), 7.36 (dd, J = 7.9, 4.9 Hz, 1H), 4.30–4.24 (m, 4H), 1.44 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chlorofor m-*d*) δ 152.07, 152.05, 149.76, 138.61, 122.20, 116.10, 94.42, 94.00, 82.29, 79. 92, 63.01, 62.54, 62.50, 15.45, 15.21, 15.15. GC-MS (EI) *m/z*: 239.

Diethyl ((2,5-dihydrothiophen-3-yl)ethynyl)phosphonate **3h**, brown oil, (88%, 43 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 3.0 Hz, 1H), 7.34 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.23 (dd, *J* = 5.0, 1.2 Hz, 1H), 4.30–4.17 (m, 4H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 132.42, 132.40, 128.95, 128.94, 125.18, 117.88, 93.60, 93.17, 78.53, 62.28, 62.24, 15.20, 15.14. GC-MS (EI) *m/z*: 246. Anal. Calcd for C₁₀H₁₅O₃PS: C, 49.18%; H, 5.37%. Found: C, 48.79%; H, 5.21%.

Diethyl (3-(benzyl(methyl)amino)prop-1-yn-1-yl)phosphonate **3i**, light yellow oil, (83%, 49 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.40–7.27 (m, 5H), 4.22 (p, *J* = 7.3 Hz, 4H), 3.61 (s, 2H), 3.47 (d, *J* = 3.7 Hz, 2H), 2.40 (s, 3H), 1. 43 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 136.78, 128.07, 127.48, 126.52, 95.79, 95.39, 73.70, 62.21, 62.16, 59.10, 44.21, 44.18, 41.01, 15.21, 15.15. GC-MS (EI) *m/z*: 295. Anal. Calcd for C₁₅H₂₂NO₃P: C, 61.01%; H, 7.51%; N, 4.74%. Found: C, 61.32%; H, 7.27%; N, 4.96%.

Chemical Formula: C₁₅H₁₆NO₅P Mass: 321

Diethyl (3-(1,3-dioxoisoindolin-2-yl)prop-1-yn-1-yl)phosphonate^[3] **3j**, light yellow solid, (89%, 57 mg), m.p. 84-86 °C (lit. 86-87 °C). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.80 (dd, *J* = 5.5, 3.0 Hz, 2H), 4.60 (d, *J* = 3.9 Hz, 2H), 4.27–4.08 (m, 4H), 1.38 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.55, 133.50, 130.83, 122.77, 92.66, 92.26, 73.71, 71.37, 62.48, 62.44, 26.34, 26.31, 15.11, 15.05. GC-MS (EI) *m/z*: 321.

Chemical Formula: C₁₃H₁₇O₄P Mass: 268

Diethyl (3-phenoxyprop-1-yn-1-yl)phosphonate^[4] **3k**, colorless oil (85%, 46 mg). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.40–7.31 (m, 2H), 7.04 (t, J = 7.4 Hz, 1H), 7.01–6.95 (m, 2H), 4.82 (d, J = 3.8 Hz, 2H), 4.20–4.07 (m, 4H), 1.34 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 156.17, 128.60, 12 1.14, 114.05, 94.12, 93.72, 77.48, 75.16, 62.48, 62.44, 54.78, 15.06, 15.00. GC -MS (EI) m/z: 268. Chemical Formula: C₉H₁₅O₃P Mass: 202

Diethyl (cyclopropylethynyl)phosphonate^[5] **3l**, light yellow oil, (75%, 30 mg). ¹ H NMR (500 MHz, Chloroform-*d*) δ 4.15 (tt, J = 8.6, 6.3 Hz, 4H), 1.76 (s, 1 H), 1.38 (t, J = 7.1 Hz, 6H), 1.03–0.85 (m, 4H). ¹³C NMR (126 MHz, Chloro form-*d*) δ 105.13, 104.69, 65.51, 63.08, 61.91, 61.87, 15.15, 15.09, 8.15, 8.14, -1.18, -1.23. GC-MS (EI) *m/z*: 202.

Diethyl (((8R,9S,13S,14S,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,1
7-decahydro-6H-cyclopenta[a]phenanthren-17-yl)ethynyl)phosphonate^[6] 3m, yellow solid, (81%, 69 mg), m.p. 83-87 °C (lit. 79.5-82 °C). ¹H NMR (500 MHz, C hloroform-d) δ 7.05 (d, J = 8.5 Hz, 1H), 6.70 (dd, J = 8.4, 2.7 Hz, 1H), 6.62 (d, J = 2.6 Hz, 1H), 4.27–4.18 (m, 4H), 2.87–2.74 (m, 2H), 2.38 (ddd, J = 14.6, 9.6, 5.6 Hz, 1H), 2.24–2.15 (m, 1H), 2.07 (ddd, J = 14.0, 11.7, 3.9 Hz, 2H), 1.96 (td, J = 11.3, 4.2 Hz, 1H), 1.86–1.72 (m, 4H), 1.59 (td, J = 11.4, 7.3 Hz, 1H), 1.42 (td, J = 7.1, 4.0 Hz, 9H), 0.89 (s, 3H). MS (ESI) *m/z*: 432.
¹³C NMR (126 MHz, Chloroform-d) δ 153.42, 136.71, 130.38, 125.40, 114.23, 111.80, 104.46, 104.08, 79.10, 72.88, 63.15, 62.53, 49.11, 46.90, 42.26, 38.33, 37.65, 32.04, 28.57, 26.30, 25.27, 21.97, 15.44, 15.19, 11.68.

(*E*)-Diphenyl(styryl)phosphine oxide^[7] **4a**, light yellow solid, (77%, 47 mg), m. p. 169-171 °C (lit. 165-167 °C), ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84–7. 76 (m, 4H), 7.60–7.48 (m, 9H), 7.40 (dt, *J* = 4.9, 2.6 Hz, 3H), 6.88 (dd, *J* = 22.4, 17.4 Hz, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.56, 146.64, 14 6.60, 130.93, 130.91, 130.47, 130.46, 130.39, 130.38, 129.15, 127.89, 127.71, 1 27.62, 126.81, 118.67. 117.84. GC-MS (EI) *m/z*: 304.

Chemical Formula: C₂₂H₂₁OP Mass: 332

(*E*)-Styryldi-p-tolylphosphine oxide^[8] **4b**, yellow solid, (73%, 48 mg). m.p. 176-179 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (dd, *J* = 11.9, 7.9 Hz, 4H), 7.59–7.44 (m, 3H), 7.39 (dt, *J* = 4.9, 2.9 Hz, 3H), 7.33–7.28 (m, 4H), 6.85 (dd, *J* = 21.9, 17.4 Hz, 1H), 2.43 (s, 6H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 146.09, 146.09, 141.30, 141.30, 134.39, 134.25, 134.25, 130.50, 130.42, 129. 28, 128.99, 128.41, 128.31, 128.24, 128.14, 127.85, 126.77, 119.30, 119.30, 11 8.47, 118.47, 20.65. GC-MS (EI) *m/z*: 332.

[1] Wang, Y, Gan, J, Liu, L, Yuan, H, Gao, Y, Liu, Y, & Zhao, Y. J. Org. Chem. 2014, 79(8), 3678-3683.

[2] Liu, P, Yang, J, Li, P, & Wang, L. App. Organomet. Chem., 2011, 25(11), 830-835.

[3] Berton, J. K, Heugebaert, T. S, Debrouwer, W, & Stevens, C. V, Org. Lett., 2016, 18(2), 208-211.

[4] Qu, Z, Chen, X., Yuan, J., Qu, L, Li, X, Wang, F, Zhao, Y. Can. J. Chem., 2012, 90(9), 747-752.

[5] Mollendal, H, Samdal, S, Gauss, J, & Guillemin, J. C. J. Phys. Chem. A, 2014, 118(40), 9419-9428.

[6] Moglie, Y, Mascaró, E, Gutierrez, V, Alonso, F, Radivoy, G. J. Org. Chem., 2016, 81(5), 1813-1818.

[7] Hoffmann, H, Diehr, H. J, Chem. Ber., 1965, 98(2), 363-368.

[8] Liu, L., Zhou, D., Dong, J., Zhou, Y., Yin, S. F., & Han, L. B. J. Org. Chem., 2018, 83(7), 4190-4196.

6 NMR Spectra of All Products

¹³C NMR of **3a**

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm) 13 C NMR of **3b**

¹³C NMR of **3c**

¹³C NMR of **3d**

8.04 8.04 8.03 8.03 7.61

4.00 -] 3.14 - j 2.01 2.03-1 6.00-1 5.0 4.5 4.0 f1 (ppm) 7.5 3.5 1.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 3.0 2.5 2.0 1.0 0.5 0.0 ¹H NMR of **3e** --165.03 131.60 130.82 128.65 127.72 123.02 96.70 96.29 --62.47 --51.50 -81.19 -78.83 $<_{15.15}^{15.21}$ 0 "-0-P-0-MeO 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of **3e**

¹³C NMR of **3f**

 13 C NMR of **3h**

¹³C NMR of **3i**

¹³C NMR of **3**j

¹³C NMR of 3k

¹³C NMR of **3**l

0.030 0.030

¹³C NMR of **3m**

¹³C NMR of **4a**

-2.43

¹³C NMR of **4b**