Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

New Journal of Chemistry

Covalent Attachment of a Fluorescent 'Pourbaix Sensor' onto a Polymer Bead for Sensing in Water

Matthew Vella Refalo, Jake C. Spiteri and David C. Magri*

Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta

Corresponding author: Prof. Dr David C. Magri phone: (356) 2340 2276 email: david.magri@um.edu.mt

Table of Contents

Experimental	2
Synthesis	3
Figure S1. Reaction scheme for the synthesis of 3 and covalent attachment on the	
polymer bead to yield 4	3
Figure S2. UV-visible absorption spectra of 10 μ M 3 in 1:1 (ν/ν) methanol/water at	
pH 3.0, 7.0 and 10.5	4
Figure S3 . Fluorescent spectra of 10 μ M 3 in 1:1 (ν/ν) methanol/water excited at 385	
nm. The input conditions are: (a) high H^+ and high Fe^{3+} , (b) high H^+ , (c) high Fe^{3+} ,	
and (d) neat sensor. The $H^{\scriptscriptstyle +}$ and Fe^{3+} concentrations are 200 μM and 20 $\mu M,$	
respectively	4
Figure S4 . ¹ H NMR spectrum of 3 in CDCl ₃	5
Figure S5. FTIR spectrum of 3	6
Figure S6. HRMS of compound 3	7

1 Experimental

1.1 Instrumentation

Syntheses were performed with an IKA C-MAG HS 7 hot plate assisted by an IKA ETS-D5 temperature probe to help maintain a constant temperature during reflux. Thin-layer chromatography (TLC) was performed on pre-coated silica plates (Sigma-Aldrich) using glass capillary tubes. The spots were observed under long wavelength (365 nm) and short wavelength (254 nm) UV light from a UVGL-58 handheld lamp. Melting points were measured with a Stuart SMP11 melting point apparatus.

NMR spectra were acquired with a Bruker Avance III HD NMR spectrometer fitted with an Ascend 500 11.75 Tesla superconducting magnet and a multinuclear 5mm PABBO probe. The frequency is 500.13 MHz for ¹H NMR and 125.76 MHz for ¹³C NMR. Data was analysed and processed by means of the software Topspin ver.3.2. Chemical shifts were reported in ppm downfield with respect to TMS at 0.00 ppm at 298 K. Infra-red spectra were recorded using a Shimadzu IR-Affinity-1 spectrophotometer between 4000-400 cm⁻¹. The instrument was calibrated against 1601 cm⁻¹ polystyrene absorption peak. IR analyses were performed as KBr disks or as a thin film between NaCl plates. The high resolution mass spectrometry (HRMS) was performed by ESI-ToF outsourced to Medac Ltd (UK). http://medacltd.com/

UV-visible absorption spectra were acquired on a Jasco V-650 spectrophotometer. Quartz cells with a pathlength of 1.0 cm were used for the measurements. Parameters of the instrument were set at 0.5 nm bandwidth and 400 nm/min scan speed. Blank spectrum was performed on the neat solvent as a reference prior the measurements of the spectra. Fluorescent measurements were acquired with a Jasco FP-8300 spectrophotometer. Quartz cells with a pathlength of 1.0 cm were used for the measurements. The parameters were excitation and emission bandwidths of 2.5 nm, 50 msec response time, and a scanning speed of 200 nm min⁻¹. The absorbance of the solutions for fluorescence was set to less than 0.1 to prevent quenching of the emission.

Photos of beads were taken with a fluorescent microscope Axiovert 40 CLF, manufactured by Carl Zeiss MicroImaging. The microscope had an ocular magnification of $\times 10$, and the magnification that was used was $\times 40$. As a source UV light, a low pressure mercury lamp was used. A UV filter with an excitation band between 450-490 nm was used. The emission of light started from 515 nm and the beam splitter was adjusted to 510 nm.

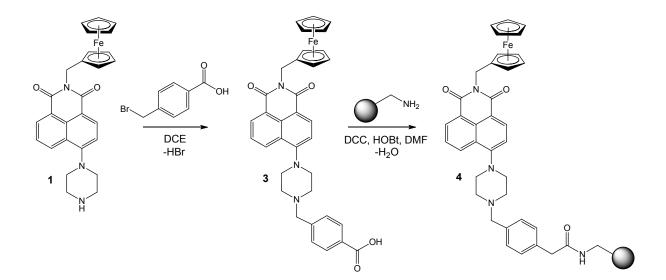
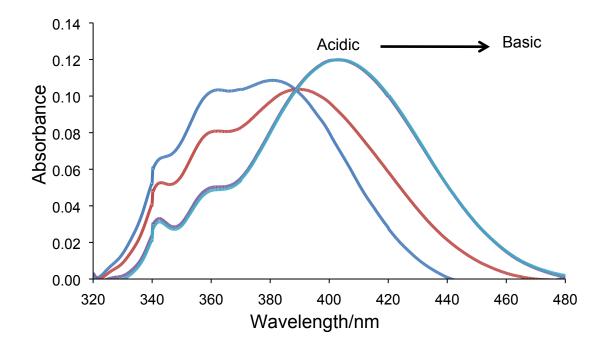
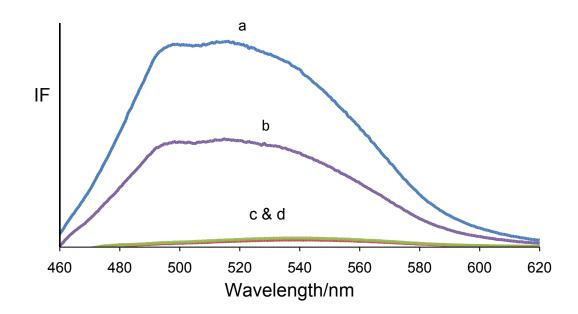
Synthesis

Synthesis of *N*-Ferrocenyl-4-((4-(2-methyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1-yl)methyl)benzoic acid **3**

N-Ferrocenylmethyl-4-piperazine-1,8-naphthalimide **2** (76 mg, 0.16 mmol), 4-(bromomethyl)benzoic acid (114 mg, 0.53 mmol) and triethylamine (88 µL, 0.63 mmol) were dissolved in 4 mL of 1,2-dichloroethane and refluxed at 90 °C for 3 hours. The solution was extracted with 1,2-dichloromethane and washed with 10% aqueous NaOH. The product was recrystallised from acetone to give an orange powder in 19% yield (22 mg). m.p. > 250 °C; R_f = 0.44 (9:1 (v/v) CH₂Cl₂/methanol); FTIR (KBr, salt, cm⁻¹): 3051, 2950, 2850, 1695 (C=O), 1653, 1585, 1382, 1183, 1110; MS (ES-TOF, 1.56 mV) m/z (%): 177 (59), 178 (10), 410 (100), 411 (28), 412 (5); HRMS for C₃₂H₄₃N₄O₅FeNa [M+Na] calculated 642.2481, found 642.2484.

Attachment of **3** onto Tentagel

To a 50 mL round-bottom flask, 16 mg (0.025 mmol) of **3**, 26 mg (0.13 mol) of DCC and 100 μ L of HOBt were dissolved in 1 mL of DMF. The reaction was stirred at 40 °C for 4 hours. The beads were washed sequentially with 10 mL of DMF, 1:1 (v/v) DMF/MeOH and MeOH.

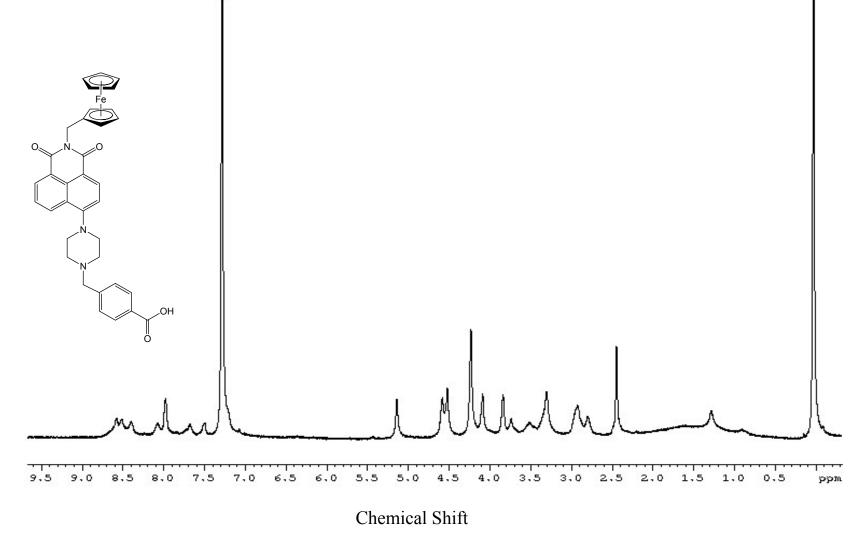

Figure S1. Reaction scheme for the synthesis of 3 and covalent attachment on the polymer bead to yield 4.

Figure S2. UV-visible absorption spectra of 10 μ M **3** in 1:1 (*v*/*v*) methanol/water at pH 3.0, 7.0 and 10.5.

Figure S3. Fluorescent spectra of 10 μ M **3** in 1:1 (ν/ν) methanol/water excited at 385 nm. The input conditions are: (a) high H⁺ and high Fe³⁺, (b) high H⁺, (c) high Fe³⁺, and (d) neat sensor. The H⁺ and Fe³⁺ concentrations are 200 μ M and 20 μ M, respectively.

Figure S4. ¹H NMR spectrum of **3** in CDCl₃.

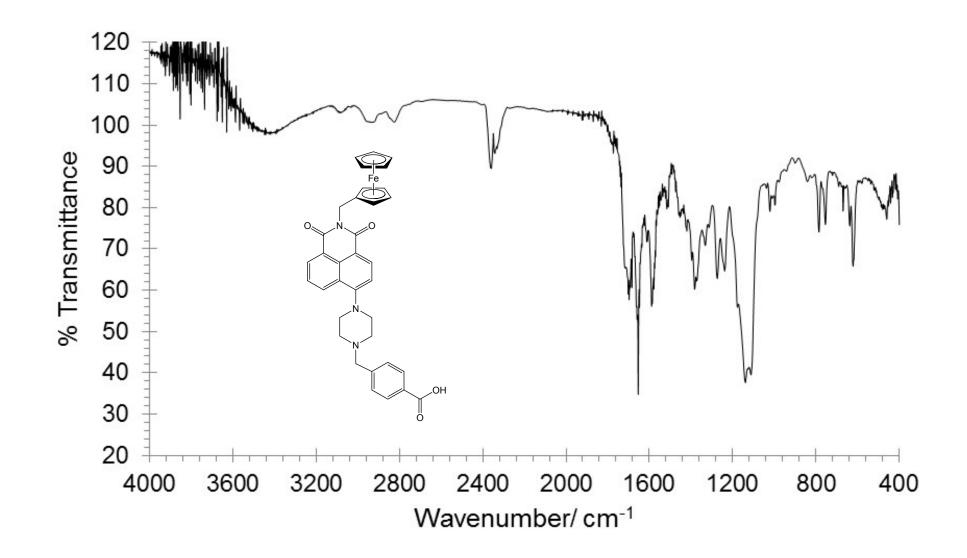


Figure S5. FTIR spectrum of 3.

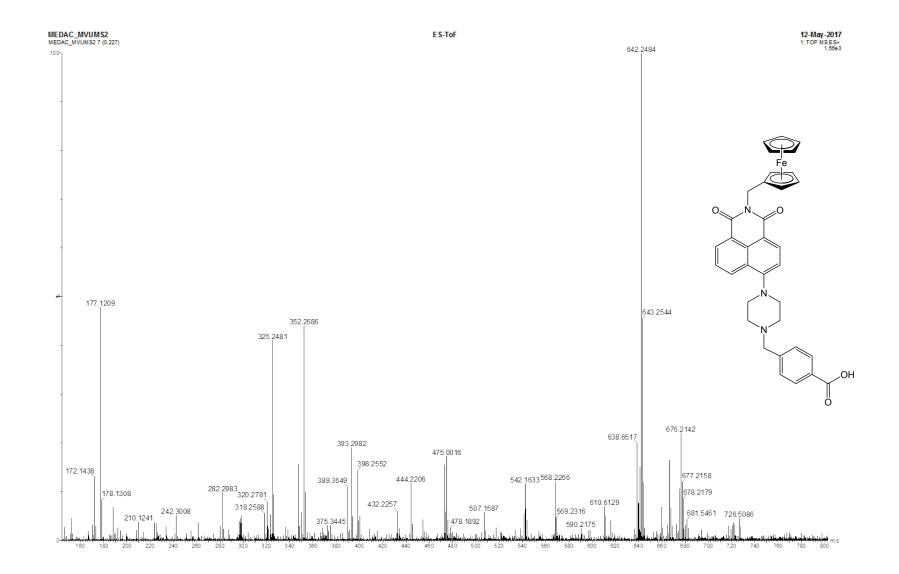


Figure S6. HRMS of compound 3.