Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPORTING INFORMATION

Utilization of pyridoxal acetal salts as water-triggered, slow-release pro-fragrances

Kellie L. Weeks, Kyle R. Rutkowski, Arnold A. Morales, and Gregory R. Boyce*

Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, USA

e-mail: gboyce@fgcu.edu

Table of Contents

I. General Information	S1
II. Synthesis of the Pyridoxal Acetal Salts	S1
III. Analytical Data for Pyridoxal Acetal Salts	S2
IV. Time-Dependent Stack Plots of Acetal Cleavage	S3-S7
V. Conditions for the Kinetic Reaction Profile for the Release of Ethanol	S7-S11
VI. ¹ H and ¹³ C Spectra of Compounds	S12-S15

I. General Information. Proton and carbon nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded at 400 and 100 MHz, respectively, with solvent resonance as the internal standard (¹H NMR: DMSO- d_6 at 2.500 ppm; ¹³C NMR: DMSO- d_6 at 39.52 ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Mass spectra were recorded on a high-resolution electrospray ionization quadrupole mass spectrometer. All reactions were carried out under air with magnetic stirring. Yield refers to isolated yield of analytically pure material. Yields are reported for a specific experiment and as a result may differ slightly from those found in the tables, which are averages of at least two experiments.

II. General Procedure for the Synthesis of the Pyridoxal Acetal Salts (3a-3c). Pyridoxal HCl was added to the appropriate alcohol (0.5 M) and the solution was heated to 60 °C for 2 hours. The solution was then cooled to room temperature and either concentrated *in vacuo* (**3a**, **3c**) or diluted with ether and allowed to crystallize in the freezer before being filtered to provide pure material (**3b**, **3d**).

III. Analytical Data for Pyridoxal Acetal Salts (3a-3d)

1-ethoxy-7-hydroxy-6-methyl-1,3-dihydrofuro[3,4-c]pyridin-5-ium chloride (**3***a*): The title compound was prepared according to the general procedure using pyridoxal HCl **1** (100 mg, 0.491 mmol, 1 equiv) in ethanol (2.5 mL, 0.2 M) affording 115 mg (99%) of the product as a white solid. Analytical Data for **3a**: m.p.: 97-103 °C. ¹H NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 12.05 (br. s, 1H), 8.28 (s, 1H), 6.58 (s, 1H), 5.14-5.03 (m, 2H), 3.75-3.70 (m, 2H) 2.61 (s, 3H), 1.11 (t, *J* = 7.0 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 149.5, 143.7, 139.0, 138.8, 125.4, 104.2, 70.0, 64.1, 15.7, 14.9. HRMS (ESI⁺) calcd for C₁₀H₁₄N₁O₃+, 196.0968; found, 196.0923.

7-hydroxy-6-methyl-1-phenethoxy-1,3-dihydrofuro[3,4-c]pyridin-5-ium chloride(**3b**): The title compound was prepared according to the general procedure using pyridoxal HCl **1** (100 mg, 0.491 mmol, 1 equiv) in 2-phenylethanol (2.5 mL, 0.2 M) affording 139.1 mg (92%) of the product as a white solid. Analytical Data for **3b**: m.p. 168-172 °C. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 12.09 (br. s, 1H), 8.28 (s, 1H), 7.27-7.15 (m, 5H), 6.67 (s, 1H), 5.11-5.06 (m, 2H), 3.96-3.89 (m, 2H), 2.88-2.83 (m, 2H), 2.62 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta_{\rm c}$ 149.0, 143.3, 138.6, 138.5, 138.1, 128.8, 128.3, 126.1, 124.97, 103.8, 69.6, 68.7, 35.6, 14.4. HRMS (ESI⁺) calcd for C₁₆H₁₈N₁O₃+, 272.1281; found, 272.1272.

7-hydroxy-1-isopropoxy-6-methyl-1,3-dihydrofuro[3,4-c]pyridin-5-ium chloride (**3c**): The title compound was prepared according to the general procedure using pyridoxal HCl **1** (100 mg, 0.491 mmol, 1 equiv) in isopropanol (2.5 mL, 0.2 M) affording 120 mg (99%) of the product as a white solid. Analytical Data for **3c**: m.p. 116-121 °C. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ 11.92 (br. s, 1H), 8.29 (s, 1H), 6.71 (s, 1H), 5.08, (s, 2H), 4.14-4.08 (m, 1H), 2.62 (s, 3H), 1.16 (d, *J* =4.0 Hz, 6H) ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 149.3, 143.8, 139.9, 139.0, 125.6, 72.1, 69.6, 24.1, 23.2. HRMS (ESI⁺) calcd for C₁₁H₁₆N₁O₃+, 210.1125; found, 210.1116.

CL

Ĥ

3c

(*E*)-1-((3,7-dimethylocta-2,6-dien-1-yl)oxy)-7-hydroxy-6-methyl-1,3-dihydrofuro[3,4-c]pyridin-5-ium chloride (**3d**): The title compound was prepared according to the general procedure using pyridoxal HCl **1** (100 mg, 0.491 mmol, 1 equiv) in geraniol (2.5 mL 0.2 M) and in DMSO (0.02 mL, 25 M) to aid in solubility then affording 123 mg (73%) of the product as a white solid. Analytical data for **3d**: m.p. 140-142 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ_{H} 12.04 (br. s, 1H), 8.28 (s, 1H), 6.63 (s, 1H), 5.30-5.27 (s, 1H), 5.12-5.04 (m, 3H), 4.29-4.19 (m, 2H), 2.62 (s, 3H), 2.03-1.95 (m, 4H), 1.62 (s, 3H), 1.61 (s, 3H), 1.53 (s, 3H) ¹³C NMR (100 MHz, CDCl₃): δ_{c} 149.0, 143.2, 139.6, 138.5, 138.3, 131.0, 125.0, 123.9, 120.4, 103.3, 69.6, 64.5, 39.0, 25.9, 25.5, 17.6, 16.3, 14.4. HRMS (ESI⁺) calcd for C₁₈H₂₆N₁O₃+, 304.1907; found, 304.1901.

IV. Time-Dependent Stack Plots of Acetal Cleavage

Acetals (**3a-3d**) (0.200 mmol) were dissolved in 1.0 mL of DMSO- d_6/D_2O and the hydrolysis was monitored by ¹H NMR.

The acetal cleavage was measured by comparing the integration of H_a to H_b whereas $H_b/(H_a+H_b)$ provides the percent completion for the acetal cleavage for **3a** and **3b**. The stack plots below provide a visual counterpart to the graphs in the manuscript. **3c** had some overlap between H_a and H_b so the fully separated methyls of the isopropyl were integrated instead.

Ethyl Acetal

30% D_2O in DMSO- d_6

 		 	N	M
 	lu	 	N	M
 		 M	/	M
 		 	N	M
 l.		 Mm	N	M
		 	N	M
 	h	 	/	M
 	_h	 	/	M
 		 	N	M
 		 	/	M
 		 	/	M
		 	/	M
 		 M	/	M
 l_		 M	N	M_^
l.		 M	/	M_n
l		 M	N	/\n
 l.		 M	N	/\n
 l_		 M	N	M_n
 l		 M	N	M_n
 l		 M	N	N
 		 	N	M~
 l_		 	M	M

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 f1 (ppm)

٨		mhr	M		
٨		mhr			
٨		mhr		M	
٨		mhr	M	P	
\		mhr		N	
۱		mhr	M	<mark>/</mark>	
L		mhr		N	
L		mhr		^	
L				^	
L		l		^	
L		l		^	
L				N	
				n	
			M		
	. /			M	
				M	
			M		
			M	\mathbb{N}	_m_M_

V. Conditions for the Kinetic Reaction Profile for the Release of Ethanol

Acetal **3a** (0.1636 mmol) was dissolved in 0.4 mL of DMSO- d_6 (except for 100% D₂O) and varying amounts of D₂O were added as illustrated in the table below.

% D ₂ O	100%	50%	35%	20%
D ₂ O Added	0.8 mL	0.4 mL	0.23 mL	0.1 mL
Final Molarity	0.2 M	0.2 M	0.25 M	0.3 M

20% D₂O in DMSO- d_6

	L	ļu	~		k	h	ı	₩
L	L	In	~	.Ml	L	M	ı	<mark>/</mark> //
L	L	hu	~	M		M		<mark> </mark> _M
L	L	fu	~	Mhl	•	M		<mark> </mark> _//
	L	-lu-	~	Mhl	.	M	ı	<mark> </mark> _M
L	L	-fu	~	Mhl	•	M	ı	<mark>_</mark>
L	L	hu	~	Mhl	k	M		<mark>_</mark>
L	L	fu	~	.//\//	la	μ	·	<mark>_</mark>
L	L	-fui	~	.//\/	.	μ	.	W
L	L	-fui	~		a	M	·	M
L	L	-fui	~	اسالا الا	h	M		N
	L	- fui	~	ال <u>، ۱</u> ۱۸۰ بال	a	M	.	n
	L	- fui	~	اسالا الله	la	<u></u>		n
	·		~		· · · · · · · · · · · · · · · · · · ·			n
		1.	~		u			
			~	M	h			
		l.	~		h			
		l	~		n	M		
	L		~		n	M		
	L	-fui	~		M	h		
	L		~		M	h		_
	L	-/	~		и	h		n
	L	·/···	~		и	h		n
	L	·/···	~		u	h	ı	r
	L	-fu-	~	M	۰	<u></u>		/
	L	./l	~	M	ı	/h		

35% D_2O in DMSO- d_6

S9

50% D₂O in DMSO-*d*₆

	Mh		
	M		
	A		
			M
	M		
	M		M
 	M		M
	Mah		M
	M		M
			M
 l	M		M
			M
			////
	Mh		
	ML		////
	Mh		
	Mu		[#]
 	Mh		M
	M		M
 	M		/M
 	M		/M
 	h	^	<mark>/</mark> //
 	h	^	M
 	h		/ /
 			//~//~
 	/h/	M	

100% D₂O

V. ¹H and ¹³C Spectra of Compounds

