Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary information:

Theoretical investigation of the conversion between different C_2H_x species over Pd-Ag/Pd(100) surface alloys: the influence on the selectivity and transformation of carbonaceous

Qiang Li,*,a Yucai Qin, a Duping Tan, b Yuan Xie, b Manli Lv, a and Lijuan Song*,a

^aKey Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, Liaoning Province, PR China. E-mail: qli0218@163.com, lsong56@lnpu.edu.cn. ^bLanzhou Chem Ind Res Ctr Petrochina, Lanzhou 730060, Gansu Province, PR China.

Fig S1. Stable adsorption structures of C_2H_2 , C_2H_3 , and C_2H_4 on Pd(100), Pd_3Ag/Pd(100), PdAg/Pd(100), and PdAg_3/Pd(100) surfaces.

Fig. S2 Co-adsorption structures of C_2H_2 with H atom and Transition-state (TS) structures of C_2H_2 and C_2H_3 hydrogenation on Pd(100), Pd_3Ag/Pd(100), PdAg/Pd(100), and PdAg_3/Pd(100) surfaces.

Reaction coordinate

Fig. S3. Energy profiles of the hydrogenation pathways of the acetylene to ethylene on Pd(100) surface and its surface alloys with Ag atoms. Metastable hydrogen diffusion steps are indicated by "H*". The script "a" signals the adsorbed state of a molecule.

Fig. S4. Electron density difference plots for the adsorption of $CHCH_2$ on the Pd(100) surface and its surface alloys with Ag atoms. The blue contours represent electron accumulations, and the yellow contours denote electron depressions.

Fig. S5. The trend of activation barriers (E_a) for the hydrogenation of CCH (a) and CCH₂ (b) as a function of the coverage of Ag atoms on Pd-Ag/Pd(100) surface alloys.

Table S1. Miliken charges of adsorbed CHCH₂ molecules on the Pd-Ag/Pd(100) surface alloys.

	C1	C2	H1	H2	H3	СН	CH ₂
pure	-0.34	-0.63	0.34	0.30	0.33	0	0
Pd(100)	-0.4	-0.62	0.12	0.14	0.04	-0.28	-0.44
Pd₃Ag/Pd(100)	-0.47	-0.61	0.13	0.15	0.04	-0.34	-0.42
PdAg/Pd(100)	-0.48	-0.54	0.14	0.21	0.03	-0.34	-0.30
PdAg₃/Pd(100)	-0.61	-0.51	0.15	0.24	0.09	-0.46	-0.18

Table S2. Calculated reaction energies ΔE (eV), barrier energies from both reactant E_a (eV) and product E_a '(eV), and all the slab energies for all initial (E_i), final (E_i), and transition (E_t) states for the elementary steps involved in the conversion of acetylene hydrogenation system on Pd(100) surface.

	Ei	E _f	Et	Ea	E _a '	ΔE
$CH \equiv CH + H \rightarrow CH CH_2$	-16340.0461	-16339.6949	-16339.3157	0.7303	0.3792	0.3512
$CHCH_2\text{+}H{\rightarrow}CH_2CH_2$	-16356.0701	-16356.4344	-16354.8499	1.2202	1.5845	-0.3642
$CH_2CH_2\text{+}H{\rightarrow}CH_2CH_3$	-16372.9044	-16372.6612	-16372.0684	0.8360	0.5929	0.2432
$CH_2CH_3\text{+}H{\rightarrow}CH_3CH_3$	-16389.0733	-16389.5581	-16388.6570	0.4163	0.9011	-0.4848
CCH+H→CHCH	-16323.2749	-16323.7118	-16322.3304	0.9445	1.3814	-0.4369
$CCH\text{+}H{\rightarrow}CCH_2$	-16323.1495	-16323.4147	-16322.3417	0.8078	1.0730	-0.2652
$\text{CCH}_2\text{+}\text{H}{\rightarrow}\text{CCH}_3$	-16339.8258	-16340.2712	-16339.1702	0.6556	1.1010	-0.4454
$\text{CCH}_3\text{+}\text{H}{\rightarrow}\text{CHCH}_3$	-16356.6977	-16356.0761	-16355.1321	1.5656	0.9441	0.6215
$\text{CCH}_2\text{+}\text{H}{\rightarrow}\text{CHCH}_2$	-16339.9759	-16339.6924	-16338.6089	1.3670	1.0835	0.2835
$CHCH_2\text{+}H{\rightarrow}CHCH_3$	-16356.1725	-16356.0788	-16355.2560	0.9165	0.8227	0.0938
$CHCH_3\text{+}H{\rightarrow}CH_2CH_3$	-16372.4931	-16372.6612	-16371.6949	0.7982	0.9663	-0.1682

Table S3. Calculated reaction energies ΔE (eV), barrier energies from both reactant E_a (eV) and product E_a '(eV), and all the slab energies for all initial (E_i), final (E_f), and transition (E_t) states for the elementary steps involved in the conversion of acetylene hydrogenation system on Pd₃Ag/Pd(100) surface.

	Ei	Ef	Et	Ea	E _a '	ΔE
$CH{\equiv}CH{+}H{\rightarrow}CHCH_2$	-16569.1423	-16568.7037	-16568.3749	0.7675	0.3288	0.4386
$CHCH_2\text{+}H{\rightarrow}CH_2CH_2$	-16585.4750	-16586.0023	-16584.4651	1.0099	1.5372	-0.5272
$CH_2CH_2\text{+}H{\rightarrow}CH_2CH_3$	-16602.4388	-16602.2278	-16601.6826	0.7562	0.5453	0.2109
$CH_2CH_3\text{+}H{\rightarrow}CH_3CH_3$	-16618.7644	-16619.1100	-16618.3274	0.4370	0.7825	-0.3455
CCH+H→CHCH	-16552.2504	-16552.7973	-16551.3989	0.8515	1.3984	-0.5469
$CCH\text{+}H{\rightarrow}CCH_2$	-16552.2573	-16552.7417	-16551.3835	0.8738	1.3582	-0.4844
$CCH_2\text{+}H{\rightarrow}CCH_3$	-16569.0627	-16569.6530	-16568.3763	0.6864	1.2767	-0.5902
$CCH_3+H{\rightarrow}CHCH_3$	-16586.0019	-16585.7185	-16584.6355	1.3664	1.0830	0.2834
$CCH_2+H{\rightarrow}CHCH_2$	-16568.9706	-16569.0740	-16568.1698	0.8009	0.9042	-0.1033
$CHCH_2\text{+}H{\rightarrow}CHCH_3$	-16585.4546	-16585.7185	-16584.8319	0.6227	0.8866	-0.2639
$CHCH_3\text{+}H{\rightarrow}CH_2CH_3$	-16602.1585	-16602.3453	-16601.4115	0.7469	0.9337	-0.1868

Table S4. Calculated reaction energies ΔE (eV), barrier energies from both reactant E_a (eV) and product E_a '(eV), and all the slab energies (eV) for all initial (E_i), final (E_f), and transition (E_t) states for the elementary steps involved in the conversion of acetylene hydrogenation system on PdAg/Pd(100) surface.

	Ei	E _f	Et	Ea	E _a '	ΔE
CH≡CH+H→CHCH ₂	-16798.0263	-16798.1156	-16797.3169	0.7094	0.7988	-0.0894
$CHCH_2\text{+}H{\rightarrow}CH_2CH_2$	-16814.4070	-16815.4426	-16813.8658	0.5411	1.5767	-1.0356
$CH_2CH_2\text{+}H{\rightarrow}CH_2CH_3$	-16831.7671	-16831.7260	-16831.0399	0.7272	0.6860	0.0411
$CH_2CH_3\text{+}H{\rightarrow}CH_3CH_3$	-16848.0803	-16848.7150	-16847.6356	0.4447	1.0794	-0.6347
CCH+H→CHCH	-16781.1720	-16781.9058	-16780.5385	0.6335	1.3672	-0.7337
$CCH\text{+}H{\rightarrow}CCH_2$	-16781.2697	-16781.6946	-16780.6988	0.5709	0.9958	-0.4248
$\text{CCH}_2\text{+}\text{H}{\rightarrow}\text{CCH}_3$	-16797.7366	-16798.5727	-16797.3027	0.4339	1.2700	-0.8360
$CCH_3+H{\rightarrow}CHCH_3$	-16814.6328	-16814.5136	-16813.6063	1.0265	0.9073	0.1192
$CCH_2+H{\rightarrow}CHCH_2$	-16797.7952	-16798.0811	-16797.0940	0.7012	0.9871	-0.2858
$CHCH_2\text{+}H{\rightarrow}CHCH_3$	-16814.4055	-16814.5136	-16813.4999	0.9056	1.0137	-0.1080
$CHCH_3+H{\rightarrow}CH_2CH_3$	-16830.8012	-16831.7260	-16830.2532	0.5480	1.4728	-0.9248

Table S5. Calculated reaction energies ΔE (eV), barrier energies from both reactant E_a (eV) and product E_a '(eV), and all the slab energies for all initial (E_i), final (E_f), and transition (E_t) states for the elementary steps involved in the conversion of acetylene hydrogenation system on PdAg₃/Pd(100) surface.

	Ei	Ef	Et	Ea	E _a '	ΔE
$CH{\equiv}CH{+}H{\rightarrow}CHCH_2$	-17026.8675	-17027.1088	-17026.2603	0.6072	0.8485	-0.2413
$CHCH_2\text{+}H{\rightarrow}CH_2CH_2$	-17043.7144	-17045.0933	-17043.3856	0.3288	1.7077	-1.3789
$CH_2CH_2\text{+}H{\rightarrow}CH_2CH_3$	-17061.0814	-17061.3756	-17060.5640	0.5174	0.8116	-0.2942
$CH_2CH_3\text{+}H{\rightarrow}CH_3CH_3$	-17077.4592	-17078.4273	-17077.2556	0.2036	1.1717	-0.9681
CCH+H→CHCH	-17010.3444	-17010.8357	-17009.7752	0.5692	1.0605	-0.4913
$CCH\text{+}H{\rightarrow}CCH_2$	-17010.2092	-17010.6031	-17009.7039	0.5053	0.8992	-0.3940
$\text{CCH}_2\text{+}\text{H}{\rightarrow}\text{CCH}_3$	-17026.5794	-17027.3323	-17026.1085	0.4709	1.2238	-0.7529
$CCH_3+H{\rightarrow}CHCH_3$	-17043.3056	-17044.0813	-17042.7091	0.5965	1.3722	-0.7758
$CCH_2+H{\rightarrow}CHCH_2$	-17026.6809	-17027.7277	-17025.8428	0.8381	1.8850	-1.0468
$CHCH_2\text{+}H{\rightarrow}CHCH_3$	-17043.7969	-17044.0905	-17042.3861	1.4109	1.7045	-0.2936
$CHCH_3\text{+}H{\rightarrow}CH_2CH_3$	-17060.2648	-17061.3756	-17060.0973	0.1675	1.2783	-1.1108