Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Acid- and base-stable porous mechanically interlocked 2D metal-organic polyrotaxane for in situ organochlorine insecticide encapsulation, sensing and removing

Payam Abdolalian¹, Ali Morsali^{*1}, Gamall Makhloufi² and Christoph Janiak²

¹ Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran

² Institut f
ür Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universit
ät D
üsseldorf, Universit
ätsstrasse 1, D-40225 D
üsseldorf, Germany

E-mail: Morsali_a@modares.ac.ir

Empirical formula	$C_{40}H_{26}N_4O_{12}S_2Zn_2$
Formula weight	949.51
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.7927(10)
b/Å	12.7479(11)
c/Å	17.1763(16)
α/°	103.520(4)
β/°	105.261(4)
γ/°	97.511(4)
Volume/Å ³	2370.6(4)
Z	2
$\overline{\rho_{calc}g/cm^3}$	1.330
μ/mm ⁻¹	1.158
F(000)	964
Crystal size/mm ³	0.080 imes 0.020 imes 0.020
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	3.358 to 45.138
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -18 \le 1 \le 18$
Reflections collected	27819
Independent reflections	$6220 [R_{int} = 0.0851, R_{sigma} = 0.0920]$
Data/restraints/parameters	6220/0/541
Goodness-of-fit on F ²	1.000
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0445, wR_2 = 0.0942$
Final R indexes [all data]	$R_1 = 0.0952, wR_2 = 0.1096$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.34

Table S1. Crystal data and structure refinement for 1.

Note on the structure refinement:

The pyridyl group with N3 can rotate or oscillate around the Zn2-N3 and C37-C40 bond. The same is possible for the pyridyl group with N1 around Zn1-N1 and C31-C34. Such a disorder would induce larger displacement parameters for the N3(N1)-bonded carbon atoms C35(C29) and C39(C33) than for the N3(N1) atom itself which is bonded to Zn. Thereby larger differences in the anisotropic displacement parameters along the N-C chemical bonds will lead to a failure in the Hirshfeld test.

Fig. S1. a) Ortep diagram of 1 along c axis (hydrogen atoms omitted), b) Paddle wheel zinc building unit (only 6-membered rings remained), c) Double entanglement to make an interlocked metal-organic polyrotaxane (c axis view) and d) The rectangular ring with the representation of window size.

Fig. S2 Dieldrin Lewis structure (left) and star-like view (right)

Table S2

Calculated and founded CHN elemental analysis for 1 and dieldrin@1

Element (%)	С	Н	Ν
Compound			
Calculated 1	50.60	2.76	5.90
Found 1	51.05	3.23	6.09
Found dieldrin@1	48.84	2.29	5.69

Fig. S3. ¹H NMR spectrum of 1 (up, left), dieldrin (up, right) and dieldrin@1 (bottom) in DMSO-d₆ digested in 100 μ L of D₂SO₄.

Fig. S4. TGA curve of 1 and dieldrin@1.

Fig. S5 The emission spectrum of compound 1 (black), H_2 sdba (blue) and 4-bpdb (red) at room temperature upon excitation at 331, 329 and 523 nm respectively.

Note: crystallographic data in CIF available in CCDC 1825208.