1	Electronic Supplementary Information
2	
3	Simple and selective detection of quercetin in extracts of plants and food
4	samples by dispersive-micro-solid phase extraction based on core-shell
5	magnetic molecularly imprinted polymer
6	
7	Arash Asfaram *a, Maryam Arabi ^b , Abbas Ostovan ^b , Hossein Sadeghi ^a and
8	Mehrorang Ghaedi *b
9	
10	^a Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj,
11	Iran.
12	^b Chemistry Department, Yasouj University, Yasouj 75914-35, Iran.
13	
14	
15	
16 17	
18	
19 20	
20 21	
22	
23 24	
25	
26	
27 28	
29	
30	
51	

^{*} Corresponding author: E-mail address: arash.asfaram@yums.ac.ir (A. Asfaram)

- 33 Contents 34 1. Figures

Figure S1. Chemical structure of quercetin.

40 Figure S2. Effect of extraction solvents on quercetin extraction by D-μ-SPE-HPLC-UV.
41 Extraction conditions were as follows: water sample volume: 15 mL; volume of extraction
42 solvent: 0.30 mL; sorbent mass: 20 mg; extraction time: 5 min; pH 5.0. (AN: Acetonitrile;
43 EtOH: Ethanol; MeOH: Methanol; DMF: Dimethylformamide; THF: Tetrahydrofuran; AC:
44 Acetone).

Figure S3. Results of process optimization for ER% of quercetin.

Figure S4. Typical chromatogram of the apple juice sample. (a) The blank sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction, and (c) quercetin extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV method at optimum extraction condition.

Figure S5. Typical chromatogram of the watercress (*Nasturtium officinale*) sample (a) the blank sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction and (c) quercetin extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV method at optimum extraction condition.

62 **Figure S6.** Typical chromatogram of the Spinach (*Spinacia oleracea*) sample (a) the blank 63 sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction, and (c) quercetin 64 extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV 65 method at optimum extraction condition.

Figure S7. Typical chromatogram of the broccoli sample (a) the blank sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction, and (c) quercetin extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV method at optimum extraction condition.

Figure S8. Typical chromatogram of the celery (*Apium graveolens*) sample (a) the blank sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction, and (c) quercetin extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV method at optimum extraction condition.

Figure S9. Typical chromatogram of the red onion sample (a) the blank sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction, and (c) quercetin extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV method at optimum extraction condition.

Figure S10. Typical chromatogram of the white onion sample (a) the blank sample without spiking, (b) spiked samples (100 μ g L⁻¹) without extraction, and (c) quercetin extracted from real samples spiked with 100 μ g L⁻¹ of quercetin by D- μ -SPE-HPLC-UV method at optimum extraction condition.

2. Tables

Source	Sum of squares	Degree of freedom	Mean square	F value	<i>p</i> value	
Model	4748.2	14	339.2	71.1	< 0.0001	
X1	446.7	1	446.7	93.7	0.0002	
X ₂	32.6	1	32.6	6.8	0.0475	
X ₃	316.8	1	316.8	66.5	0.0005	
X4	929.5	1	929.5	194.9	< 0.0001	
X ₁ X ₂	356.4	1	356.4	74.7	0.0003	
X ₁ X ₃	0.6	1	0.6 0.1		0.7473	
X ₁ X ₄	83.4	1	83.4	17.5	0.0086	
X ₂ X ₃	57.3	1	57.3	12.0	0.0180	
X ₂ X ₄	132.8	1	132.8	27.9	0.0033	
X ₃ X ₄	34.5	1	34.5	7.2	0.0433	
X1 ²	316.0	1	316.0	66.3	0.0005	
X2 ²	970.4	1	970.4	203.5	< 0.0001	
X ₃ ²	2.0	1	2.0	0.4	0.5425	
X4 ²	628.7	1	628.7 131.9		< 0.0001	
Residual	23.8	5	4.8			
Lack-of-fit	17.6	2	8.8	4.2	0.1334	
Pure error	6.2	3	2.1			
Corr. total 4772.0 19		19				

96 Table S1. ANOVA table for the presented model for the prediction of quercetin recovery97 using CCD.

Table S2. Analytical characteristics of the D-μ-SPE-HPLC-UV method.

Quantitative analysis				
Sample volume (mL)	15			
Extraction solvent (mL)	0.20			
Linear range (µg L ⁻¹)	0.6-5500			
LOD (µg L ⁻¹)	0.113-0.117			
Reproducibility (RSD, %)	<6.0			
Repeatability (RSD, %)	<3.0			
LOQ (µg L ⁻¹)	0.377-0.391			

Detection method	ER (%)	Precision	LOD	LOQ	Linear range	Time	Ref.
		(% RSD)	(µg L ⁻¹)	(µg L ⁻¹)	(μg L ⁻¹)	(min)	
HPLC-UV-IDLLME	96.20-98.30	1.70-4.90	0.26	0.78	0.5–1000	5.0	16
RP-HPLC-UV	97.27-99.98	0.23-0.91	0.79	-	19-280	15	65
RP-HPLC-UV	95.92-98.10	2.83-3.62	0.52	1.91	20.0-2000	20	66
RP-HPLC-UV	95.90-104.10	9.70-16.5	1.0	1.61	1.638 - 81.90	30	17
RP-HPLC-UV	95.50-102.50	1.25-3.13	85	283	714-28560	20	67
HPLC-UV-SPE	92.36-99.41	1.50-9.40	0.35	7-35	20–1000	45	68
HPLC-CL-IL-PLE	93.70–105.2	1.50-5.70	3.8	-	10-500	12	69
CE-ED	96.84-98.76	2.06-3.14	57.43	-	150-3000	10	70
CV and LSV	-	1.10-3.50	0.100	-	0.23-314	15	71
D-µ-SPE-HPLC-UV	95.44-106.89	0.89-5.63	0.113-0.117	0.377-0.391	0.6-5500	22	This work

101 **Table S3.** Comparison of the characteristic performance data obtained by using D-μ-SPE-HPLC-UV with those of other 102 preconcentration techniques for quercetin determination in different samples.

103 HPLC: High performance liquid chromatographic

104 IDLLME: Inverted dispersive liquid-liquid microextraction

105 RP-HPLC: Reversed-phase high performance liquid chromatography

- 106 CL: Chemiluminescence
- 107 IL-PLE: Ionic liquid-based pressurized liquid extraction
- 108 CE-ED: Capillary electrophoresis with electrochemical detection
- 109 CV: Cyclic voltammetry
- 110 LSV: Linear sweep voltammetry