Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

NJC

PAPER

View Article Online View Journal | View Issue

Electronic supplementary information (ESI)

New oxidovanadium(IV) complex with redox-active acenaphthene-1,2-diimine ligand: synthesis, structure, redox properties and catalytic activity in alkane oxidations with hydrogen peroxide †

Iakov S. Fomenko,^a Artem L. Gushchin,^{*ab} Lidia S. Shul'pina,^c Nikolay S. Ikonnikov,^c Pavel A. Abramov,^a Nikolay F. Romashev,^{ab} Artem S. Poryvaev,^{bd} Alena M. Sheveleva,^{bd} Artem S. Bogomyakov,^d Nikita Y. Shmelev,^{ab} Matvey V. Fedin,^d Georgiy B. Shul'pin,^{*ef} and Maxim N. Sokolov^{ab}

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia. E-mail: gushchin@niic.nsc.ru

^b Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia

^c Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ulitsa Vavilova, dom 28, Moscow 119991, Russia ORCID Lidia S. Shul'pina: http://orcid.org/0000-0002-1448-9228

^d International Tomography Center, Siberian Branch of Russian Academy of Sciences, 3a Institutskaya st., 630090 Novosibirsk, Russia

^e Department of Dynamics of Chemical and Biologicl Processes, Semenov Institute of Chemical Physics, Russian Academy of Sciences, ulitsa Kosygina, dom 4, Moscow 119991, Russia. Email: shulpin@chph.ras.ru ORCID: http://orcid.org/0000-0002-7053-4812

^f Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia

Fig. S1. Crystal packing of 1.1.7CH₂Cl₂

Table S1. Kinetic parameters for the competitive oxidation of cyclohexane and acetonitrile with various systems based on H_2O_2 .^a The data are taken from ref¹.

Entry	System	k_{2} [CH ₃ CN]/ k_{1} (M)	k_2/k_1	
1	$H_2O_2/O_2/1/PCA$ (this work)	0.14	0.008	
2	$H_2O_2/O_2/(n-Bu_4N)VO_3/PCA$	0.14	0.008	
3	H ₂ O ₂ /O ₂ /"Cu ₄ "/CF ₃ COOH	0.20	0.012	
4	H ₂ O ₂ /O ₂ /"Cu ₄ "/HCl	0.10	0.006	
5	H ₂ O ₂ /O ₂ /[Co ₄ Fe ₂ OSae ₈]/HNO ₃	0.14	0.008	
6	H ₂ O ₂ /O ₂ /Cp* ₂ Os/py	0.09÷0.19	0.0055÷0.011	
7	H ₂ O ₂ /O ₂ /Cp ₂ Fe/Py/PCA	0.19	0.011	
8	H ₂ O ₂ /O ₂ /"Fe ₂ (TACN)"/PCA	0.19	0.011	
9	$H_2O_2/O_2/2$ /carboxylic acid	4	0.24	

^a Concentration $[CH_3CN]_0$ was assumed to be 17 M. Abbreviations: PCA is pyrazine-2-carboxylic acid. "Cu₄" is tetracopper(II) triethanolaminate complex $[O \subset Cu_4 \{N(CH_2CH_2O)_3\}_4(BOH)_4][BF_4]_2$. Complex $[Co_4Fe_2OSae_8] \cdot 4DMF \cdot H_2O$, where $H_2Sae =$ salicylidene-2-ethanolamine. Cp*₂Os is decamethylosmocene. Cp₂Fe is ferrocene. "Fe₂(TACN)" is an iron(III) complex with 1,4,7-triazacyclononane.

Table S2. Selectivity parameters obtained in the oxidation of linear and branched alkanes in acetonitrile with H_2O_2 catalyzed by complex 1 and (for comparison) some other systems.^a

		C(1):C(2):C(3):C(4)	1º:2º:3º	trans:cis	trans:cis	
Entry	System	<i>n</i> -Heptane	МСН	<i>c</i> -1,2-DMCH	<i>t</i> -1,2-DMCH	
1	1/H ₂ O ₂ (this work)	1.0:5.6:5.8:5.5	1.0:5.1:10.8	0.9		
2	1/PCA/H ₂ O ₂ (this work)	1.0: 6.25:6.75:6.25	1.0;5.0:12.6	0.8		
3	(n-Bu ₄ N)[VO ₃]/PCA/H ₂ O ₂	1:9:7:7	1:6:18	0.75	0.80	
4	$h\nu/H_2O_2$	1:7:6:7		0.90		
5	FeSO ₄ /H ₂ O ₂	1:5:5:4.5	1:3:6	1.3	1.2	
6	[Cp ₂ Fe]/PCA/H ₂ O ₂	1:7:7:6	1:10:33	0.80	0.80	
7	[Os ₃ (CO) ₁₂]/py/H ₂ O ₂	1:4:4:4	1:5:11		0.85	
8	Al(NO ₃) ₃ /H ₂ O ₂	1:5:5:5	1:6:23	0.8	0.8	
9	$[Mn_2L_2O_3]^{2+}/MeCO_2H/H_2O_2$	1:42:37:34	1:26:200	0.34	4.1	
9	2 /oxalic acid/H ₂ O ₂	1:91:99:68		0.31	13	
10	[Mn ₂ L ₂ O ₃] ²⁺ /oxalic acid/Oxone	1:30:28:30	1:12:150	0.5	0.2	

^a All parameters were measured after reduction of the reaction mixtures with triphenylphosphine before GC analysis and calculated based on the ratios of isomeric alcohols. Parameter C(1):C(2):C(3):C(4) is the relative normalized (taking into account the number of hydrogen atoms at each carbon) reactivities of hydrogen atoms at carbons 1, 2, 3 and 4 of the chain of *n*-heptane. Parameter 1°:2°:3° is the relative normalized reactivities of hydrogen atoms at primary, secondary and tertiary carbons of methylcyclohexane (MCH). Parameter *trans/cis* is the ratio of isomers of *tert*-alcohols with mutual *trans*- and *cis*-orientation of *the methyl groups* formed in the oxidation of *cis*- and *trans*-1,2-dimethylcyclohexane (DMCH). Term hv means UV irradiation. [Cp₂Fe] is ferrocene. Complex [Mn₂L₂O₃]²⁺ is the binuclear manganese derivative [LMn(μ -O)₃MnL]²⁺, where L = 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN). Complex **2** is [Mn₂(*R*-L^{Me2R})₂(μ -O)₂]³⁺ where R-L^{Me2R} = (*R*)-1-(2-hydroxypropyl)-4,7-dimethyl-1,4,7-triazacyclononane. The data are taken from Ref²⁻²⁰. Examples of chromatograms obtained in the oxidation of *n*-heptane and methylcyclohexane (MCH) are presented in Figs. S2 and S3, respectively.

Fig. S2. Chromatograms obtained in the *n*-heptane before treating (top picture) and after treating (bottom picture) with PPh₃

Fig. S3. Chromatograms obtained in the methylcyclohexane oxidation before treating (top picture) and after treating (bottom picture) with PPh₃

Fig. S4. IR spectrum of [VOCl₂(dpp-bian)] (1)

Fig. S5. UV-vis specrum of [VOCl₂(dpp-bian)] (1): $C = 3.3 \cdot 10^{-4}$ M (black line), $3.3 \cdot 10^{-5}$ M (red line)

References

- 1 G. B. Shul'pin, D. S. Nesterov and L. S. Shul'pina, *Inorganica Chim. Acta*, 2017, 455, 666–676.
- 2 G. B. Shul'pin, D. Attanasio and L. Suber, *Russ. Chem. Bull.*, 1993, **42**, 55–59.
- 3 G. B. Shulpin, D. Attanasio and L. Suber, J. Catal., 1993, 142, 147–152.
- 4 G. B. Shul'pin, A. N. Druzhinina and G. V. Nizova, *Russ. Chem. Bull.*, 1993, **42**, 1326–1329.
- 5 G. B. Shul'pin, R. S. Drago and M. Gonzalez, *Russ. Chem. Bull.*, 1996, 45, 2386–2388.
- 6 G. B. Shul'pin, M. C. Guerreiro and U. Schuchardt, *Tetrahedron*, 1996, **52**, 13051–13062.
- 7 G. V. Nizova, G. Süss-Fink and G. B. Shul'pin, Chem. Commun., 1997, 397–398.
- 8 G. V Nizova, G. Süss-Fink and G. B. Shul'pin, *Tetrahedron*, 1997, **53**, 3603–3614.
- G. Süss-Fink, G. V Nizova, S. Stanislas and G. B. Shul'pin, *J. Mol. Catal. A Chem.*, 1998, 130, 163–170.
- 10 G. B. Shul'pin, Y. Ishii, S. Sakaguchi and T. Iwahama, Russ. Chem. Bull., 1999, 48, 887–890.
- G. B. Shul'pin, Y. N. Kozlov, G. V. Nizova, G. Süss-Fink, S. Stanislas, A. Kitaygorodskiy and V.
 S. Kulikova, J. Chem. Soc. Perkin Trans. 2, 2001, 1351–1371.

- 12 G. B. Shul'pin and E. R. Lachter, J. Mol. Catal. A Chem., 2003, 197, 65–71.
- M. H. C. de la Cruz, Y. N. Kozlov, E. R. Lachter and G. B. Shul'pin, *New J. Chem.*, 2003, 27, 634–638.
- 14 R. Z. Khaliullin, A. T. Bell and M. Head-Gordon, J. Phys. Chem. B, 2005, 109, 17984–17992.
- 15 Y. N. Kozlov, V. B. Romakh, A. Kitaygorodskiy, P. Buglyó, G. Süss-Fink and G. B. Shul'pin, *J. Phys. Chem. A*, 2007, **111**, 7736–7752.
- E. V. Gusevskaya, L. Menini, L. A. Parreira, R. A. Mesquita, Y. N. Kozlov and G. B. Shul'pin, J. Mol. Catal. A Chem., 2012, 363–364, 140–147.
- M. V. Kirillova, M. L. Kuznetsov, V. B. Romakh, L. S. Shul'pina, J. J. R. Fraústo da Silva, A. J. L. Pombeiro and G. B. Shul'pin, *J. Catal.*, 2009, 267, 140–157.
- 18 A. M. Kirillov and G. B. Shul'pin, Coord. Chem. Rev., 2013, 257, 732–754.
- 19 M. Sutradhar, N. V. Shvydkiy, M. F. C. Guedes da Silva, M. V. Kirillova, Y. N. Kozlov, A. J. L. Pombeiro and G. B. Shul'pin, *Dalt. Trans.*, 2013, 42, 11791–11803.
- I. Gryca, K. Czerwińska, B. Machura, A. Chrobok, L. S. Shul'pina, M. L. Kuznetsov, D. S. Nesterov, Y. N. Kozlov, A. J. L. Pombeiro, I. A. Varyan and G. B. Shul'pin, *Inorg. Chem.*, 2018, 57, 1824–1839.