Study of forced degradation behaviour of cobicistat and atazanavir using LC/ESI/QTOF/MS; Combination of in-source and collision induced dissociation for evaluate the fragmentation patterns of degradation products

Supplementary Data

- Fig. S1 UV spectra of cobicistat and atazanavir
- **Fig. S2** UPLC/PDA chromatograms of trials were performed to separate the critical pair ATZ
- Fig. S3 LC/MS/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) COB, (b) C1, (c) C2, (d) C4, and (e) C7
- Fig. S4 LC/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) C3, (b) C5, (c) C6, (d) C8, and (e) C9
- Fig. S5 (a) In-source fragmentation of C3 (m/z 410), (b) MS/MS spectra of [M+H]⁺ ion of C3, (c) MS/MS spectra of [M+H]⁺ ion of m/z 349, (d) MS/MS spectra of [M+H]⁺ ion of m/z 332, (e) MS/MS spectra of [M+H]⁺ ion of m/z 252
- **Fig. S6** (a) In-source fragmentation of C5 (m/z 580), (b) MS/MS spectra of [M+H]⁺ ion of C5, (c) MS/MS spectra of [M+H]⁺ ion of m/z 493, (d) MS/MS spectra of [M+H]⁺ ion of m/z 393, (e) MS/MS spectra of [M+H]⁺ ion of m/z 198
- Fig. S7 (a) In-source fragmentation of C6/C8 (m/z 606), (b) MS/MS spectra of $[M+H]^+$ ion of C6/C8, (c) MS/MS spectra of $[M+H]^+$ ion of m/z 562, (d) MS/MS spectra of $[M+H]^+$ ion of m/z 491, (e) MS/MS spectra of $[M+H]^+$ ion of m/z 448, (f) MS/MS spectra of $[M+H]^+$ ion of m/z 214
- Fig. S8 (a) In-source fragmentation of C9 (m/z 792), (b) MS/MS spectra of $[M+H]^+$ ion of C9, (c) MS/MS spectra of $[M+H]^+$ ion of m/z 689, (d) MS/MS spectra of $[M+H]^+$ ion of m/z 622, (e) MS/MS spectra of $[M+H]^+$ ion of m/z 519, (f) MS/MS spectra of $[M+H]^+$ ion of m/z 213
- Fig. S9 LC/MS/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) ATZ, (b) A1, (c) A2, and (d) A3
- Fig. S10 LC/MS/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) A4, (b) A5, and (c) A6
- **Table S1**Summery of trials carried out to separate the critical pair (A2 & A3) of ATZ
- **Table S2**High resolution mass spectrometry data of all fragment ions of COB and ATZ
and their DPs
- **Table S3**Accuracy data of UPLC method for COB and ATZ
- **Table S4**Precision data of UPLC method for COB and ATZ

Fig. S1 UV spectra of cobicistat and atazanavir

Fig. S2. UPLC/PDA chromatograms of trials were performed to separate the critical pair ATZ

Fig. S3. LC/MS/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) COB, (b) C1, (c) C2, (d) C4, and (e) C7

Fig. S4. LC/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the $[M+H]^+$ ions of (a) C3, (b) C5, (c) C6, (d) C8, and (e) C9

Fig. S5. (a) In-source fragmentation of C3 (m/z 410), (b) MS/MS spectra of $[M+H]^+$ ion of C3, (c) MS/MS spectra of $[M+H]^+$ ion of m/z 349, (d) MS/MS spectra of $[M+H]^+$ ion of m/z 332, (e) MS/MS spectra of $[M+H]^+$ ion of m/z 252

Fig. S6. (a) In-source fragmentation of C5 (m/z 580), (b) MS/MS spectra of $[M+H]^+$ ion of C5, (c) MS/MS spectra of $[M+H]^+$ ion of m/z 493, (d) MS/MS spectra of $[M+H]^+$ ion of m/z 393, (e) MS/MS spectra of $[M+H]^+$ ion of m/z 198

Fig. S7. (a) In-source fragmentation of C6/C8 (m/z 606), (b) MS/MS spectra of [M+H]⁺ ion of C6/C8, (c) MS/MS spectra of [M+H]⁺ ion of m/z 562, (d) MS/MS spectra of [M+H]⁺ ion of m/z 491, (e) MS/MS spectra of [M+H]⁺ ion of m/z 448, (f) MS/MS spectra of [M+H]⁺ ion of m/z 214

Fig. S8. (a) In-source fragmentation of C9 (m/z 792), (b) MS/MS spectra of $[M+H]^+$ ion of C9, (c) MS/MS spectra of $[M+H]^+$ ion of m/z 689, (d) MS/MS spectra of $[M+H]^+$ ion of m/z 622, (e) MS/MS spectra of $[M+H]^+$ ion of m/z 519, (f) MS/MS spectra of $[M+H]^+$ ion of m/z 213

Fig. S9. LC/MS/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) ATZ, (b) A1, (c) A2, and (d) A3

Fig. S10. LC/MS/MS spectra (Count (%) vs. mass-to-charge (m/z)) of the [M+H]⁺ ions of (a) A4, (b) A5, and (c) A6

Scheme S1. Probable mechanisms of the formation of C1-C9

Scheme S2. Probable mechanisms of the formation of A1-A6

		Mob	USP Resolution	
Fig No	Column	Aqueous phase (A)	Organic phase (B)	between the A2&A3
S1a	BEH C18	10mM Ammonium acetate	Acetonitrile	1.10
S1b	BEH C18	10mM Ammonium acetate	Acetonitrile: methanol (70: 30, %v/v)	1.25
S1c	BEH C18	10mM Ammonium acetate, pH 4	Acetonitrile: methanol (70: 30, %v/v)	1.35
S1d	BEH C18	10mM Ammonium acetate, pH 5	Acetonitrile: methanol (70: 30, %v/v)	1.19
Sle	CSH C18	10mM Ammonium acetate	Acetonitrile	1.26
S1f	CSH C18	10mM Ammonium acetate	Acetonitrile: methanol (70: 30, %v/v)	1.24
S1g	HSS Cyano	10mM Ammonium acetate	Acetonitrile: methanol (70: 30, %v/v)	Merged peaks- no separation
S1h	CSH Flouro phenyl	10mM Ammonium acetate	Acetonitrile: methanol (50: 50, %v/v) + 10% water	1.11
S1i	CSH phenyl hexyl	10mM Ammonium acetate	Acetonitrile	1.11
S1j	CSH phenyl hexyl	10mM Ammonium acetate	Acetonitrile: methanol (70: 30, %v/v)	1.09
S1k	CSH phenyl hexyl	0.1% Trifloro acetic acid	Acetonitrile: methanol (80: 20, %v/v)	1.34
S11	CSH phenyl hexyl	0.1% Formic acid	Acetonitrile: methanol (80: 20, %v/v)	1.70

Table S1 Data of trials carried out to separate the critical pair (A2 & A3) of ATZ

Name of drug/DP	Molecular Formula	Theoretical mass	Observed mass	Error ppm
COB	$C_{40}H_{54}N_7O_5S_2^+$	776.3622	776.3629	-0.90
	$C_{36}H_{45}N_6O_4S_2^+$	689.2938	689.2928	1.45
	$C_{32}H_{40}N_5O_5S^+$	606.2745	606.2746	-0.16
	$C_{31}H_{40}N_5O_3S^+$	562.2846	562.2845	0.18
	$C_{31}H_{37}N_4O_3S^+$	545.2581	545.2579	0.37
	$C_{28}H_{31}N_4O_4S^+$	519.2061	519.2059	0.39
	C ₂₈ H ₃₅ N ₄ O ₄ ⁺	491.2653	491.2651	0.41
	$C_{27}H_{35}N_4O_3^+$	463.2704	463.2699	1.08
	C ₂₇ H ₃₄ N ₃ O ₃ ⁺	448.2595	448.2592	0.67
	$C_{23}H_{25}N_2O_2^+$	361.1911	361.191	0.28
	$C_9H_{16}N_3O_3^+$	214.1186	214.1182	1.87
	$C_9H_{13}N_2O_3^+$	197.0921	197.0916	2.54
	$C_8H_{15}N_2S^+$	171.095	171.0948	1.17
	$C_{5}H_{7}N_{2}O_{2}^{+}$	127.0502	127.0498	3.15
	$C_4H_4NS^+$	98.0059	98.006	-1.02
C1	$C_8H_{15}N_2S^+$	171.095	171.0951	-0.58
	$C_7H_{10}NS^+$	140.0528	140.0526	1.43
	$C_5H_6NS^+$	112.0215	112.0229	-12.50
	$C_3H_3S^+$	70.995	70.9951	-1.41
	$C_2H_3S^+$	58.995	58.9947	5.09
	$C_3H_4N^+$	54.0338	54.0332	11.10
C2	$C_{17}H_{29}N_4O_4S^+$	385.1904	385.1912	-2.08
	$C_{13}H_{20}N_3O_3S^+$	298.122	298.1214	2.01
	$C_9H_{15}N_2O_4^+$	215.1026	215.1027	-0.46
	$C_9H_{13}N_2O_3^+$	197.0921	197.0907	7.10
	$C_8H_{15}N_2S^+$	171.095	171.095	0.00
	$C_{7}H_{10}NS^{+}$	140.0528	140.0527	0.71
	$C_5H_6NO_3^+$	128.0342	128.0343	-0.78
	$C_5H_{10}NO^+$	100.0757	100.0758	-1.00
	$C_4H_{10}NO^+$	88.0757	88.0759	-2.27
	$C_3H_6N^+$	56.0495	56.0498	-5.35
<u>C3</u>	$C_{23}H_{28}N_3O_2S^+$	410.1897	410.1899	-0.49
	$C_{23}H_{25}N_2O_2S^+$	393.1631	393.1638	-1.78
	$C_{22}H_{25}N_2S^+$	349.1733	349.1734	-0.29
	$C_{22}H_{22}NS^+$	332.1467	332.1467	0.00
	$C_{18}H_{22}N^+$	252.1747	252.1749	-0.79
	$C_{11}H_{14}N^+$	160.1121	160.1121	0.00
	$C_{10}H_{11}^+$	131.0855	131.0858	-2.29
	$C_9H_9^+$	117.0699	117.0702	-2.56
	$C_4H_4NS^+$	98.0059	98.0063	-4.08
	$C_7H_7^+$	91.0542	91.0547	-5.49
		1		1

High resolution mass spectrometry data of all fragment ions of drug and its DPs

C4	C ₃₅ H ₅₁ N ₆ O ₃ S ⁺	635.3738	635.3728	1.57
	C ₂₇ H ₃₇ N ₄ O ₃ ⁺	465.286	465.2855	1.07
	$C_{27}H_{34}N_{3}O_{3}^{+}$	448.2595	448.2597	-0.45
	$C_{23}H_{28}N_3O_2^+$	378.2176	378.2175	0.26
	$C_{23}H_{25}N_2O_2^+$	361.1911	361.1936	-6.92
	$C_{18}H_{22}N^+$	252.1747	252.1725	8.72
	$C_9H_{16}N_3O_3^+$	214.1186	214.1193	-3.27
	$C_9H_{13}N_2O_3^+$	197.0921	197.0916	2.54
	$C_8H_{15}N_2S^+$	171.095	171.0944	3.51
	$C_5H_7N_2O_2^+$	127.0502	127.0509	-5.51
	$C_{5}H_{10}NO^{+}$	100.0754	100.0754	0.00
C5	$C_{31}H_{42}N_5O_4S^+$	580.2952	580.2949	0.52
	$C_{27}H_{33}N_4O_3S^+$	493.2268	493.2274	-1.22
	$C_{23}H_{25}N_2O_2S^+$	393.1631	393.1652	-5.34
	$C_{23}H_{28}N_3O_2^+$	378.2176	378.2157	5.02
	$C_{22}H_{25}N_2S^+$	349.1733	349.1728	1.43
	$C_{22}H_{22}NS^+$	332.1467	332.1473	-1.81
	$C_{18}H_{22}N^+$	252.1747	252.1751	-1.59
	$C_{8}H_{12}N_{3}OS^{+}$	198.0696	198.0698	-1.01
	$C_8H_{15}N_2O_2^+$	171.1128	171.1125	1.75
	$C_{11}H_{14}N^+$	160.1121	160.1115	3.75
	$C_{10}H_{11}^+$	131.0855	131.0861	-4.58
	C ₉ H ₉ ⁺	117.0699	117.0698	0.85
	$C_5H_{10}NO^+$	100.0757	100.0755	2.00
	C7H7 ⁺	91.0542	91.0551	-9.88
C6	$C_{32}H_{40}N_5O_5S^+$	606.2745	606.275	-0.82
	$C_{31}H_{40}N_5O_3S^+$	562.2846	562.2846	0.00
	$C_{31}H_{37}N_4O_3S^+$	545.2581	545.2583	-0.37
	C ₂₈ H ₃₅ N ₄ O ₄ ⁺	491.2653	491.2657	-0.81
	$C_{27}H_{35}N_4O_3^+$	463.2704	463.2712	-1.73
	$C_{27}H_{34}N_3O_3^+$	448.2595	448.2599	-0.89
	$C_{23}H_{25}N_2O_2^+$	361.1911	361.1917	-1.66
	$C_{22}H_{22}NS^+$	332.1467	332.1474	-2.11
	$C_9H_{16}N_3O_3^+$	214.1186	214.119	-1.87
	C ₉ H ₁₃ N ₂ O ₃ ⁺	197.0921	197.0925	-2.03
	$C_{5}H_{7}N_{2}O_{2}^{+}$	127.0502	127.0503	-0.79
	$C_4H_4NS^+$	98.0059	98.0065	-6.12
C7	C ₄ H ₆ NOS ⁺	116.0165	116.0174	-7.76
	C ₃ H ₅ OS ⁺	89.0056	89.0055	1.12
	C ₃ H ₄ NS ⁺	86.0059	86.0058	1.16
	C ₃ H ₃ S ⁺	70.995	70.9948	2.82
	$C_2H_3S^+$	58.995	58.9948	3.39
С9	$C_{40}H_{54}N_7O_6S_2^+$	792.3572	792.3575	-0.38
	$C_{36}H_{45}N_6O_4S_2^+$	689.2938	689.2962	-3.48

C ₃	$_{2}H_{40}N_{5}O_{6}S^{+}$	622.2694	622.2716	-3.54
C ₂	$_{8}H_{31}N_{4}O_{4}S^{+}$	519.2061	519.2074	-2.50
C ₂	$_{8}H_{35}N_{4}O_{5}^{+}$	507.2602	507.2606	-0.79
C ₂	$_{3}H_{25}N_{2}O_{2}S^{+}$	393.1631	393.1636	-1.27
C ₂	$_{2}H_{25}N_{2}S^{+}$	349.1733	349.1748	-4.30
C	$\frac{1}{H_{13}N_2O_4^+}$	213.087	213.0874	-1.88
C ₅	$H_7N_2O_2^+$	127.0502	127.0499	2.36
C ₅	$H_{10}NO^+$	100.0757	100.0758	-1.00
	10			
ATZ C ₃	$_{8}H_{53}N_{6}O_{7}^{+}$	705.397	705.3978	-1.13
C ₃	$_{8}H_{51}N_{6}O_{6}^{+}$	687.3865	687.3863	0.29
<u> </u>	$\frac{6}{6}$ H ₄₆ N ₅ O ₄ ⁺	612.3544	612.3544	0.00
<u> </u>	$_{0}^{0}H_{40}N_{5}O_{4}^{+}$	534.3075	534.3082	-1.31
<u> </u>	$_{0}H_{38}N_{5}O_{3}^{+}$	516.2969	516.2971	-0.39
	$_{0}H_{25}N_{4}O_{2}^{+}$	499 2704	499 2706	-0.40
	$H_{22}N_4O^+$	441 2649	441 264	2.04
	$^{0}H_{20}N_{2}O^{+}$	424 2383	424 2388	-1 18
	$\frac{1}{2}H_{20}N_4O_2^+$	397 2234	397 2231	0.76
	$_{0}H_{27}N_{4}O_{2}^{+}$	371 2078	371 2084	-1.62
	$_{0}H_{27}N_{2}O_{4}^{+}$	335 1965	335 1977	-3.58
	$_{0}H_{2}/N_{2}O^{+}$	322 1914	322 1918	-1 24
	$H_{10}N^+$	168 0808	168 082	_7 14
	$H_1 N \Omega_2^+$	144 1019	144 1027	-5.55
	11/41/02	141.1017	177.1027	-5.55
A1 C2	$_{0}H_{c2}N_{c}\Omega_{7}^{+}$	705 397	705 3979	-1 28
	$H_{51}N_{c}O_{c}^{+}$	687 3865	687 3864	0.15
	$H_{4}(N_{5}\Omega_{4}^{+})$	612 3544	612 355	-0.98
	$H_{40}N_5O_4^+$	534 3075	534 3075	0.00
	$\frac{1}{0}$ H ₂₀ N ₅ O ₂ ⁺	516 2969	516 2969	0.00
	$_{0}H_{25}N_{4}O_{2}^{+}$	499 2704	499 2709	-1.00
	$^{0}H_{22}N_{4}O^{+}$	441 2649	441 2653	-0.91
	$H_{20}N_2O^+$	424 2383	424 2383	0.00
	$\frac{1}{2}$ H ₂₀ N ₄ O ₂ ⁺	397 2234	397 2249	-3 78
	$_{0}H_{27}N_{4}O_{2}^{+}$	371 2078	371 2081	-0.81
	$H_{27}N_2O_4^+$	335 1965	335 1972	-2.09
	$H_{24}N_2O^+$	322 1914	322 1918	-1 24
	$^{0}H_{24}(30)$	168 0808	168 0817	-5 35
	$\frac{1}{H_{14}NO_{2}^{+}}$	144 1019	144 1024	-3 47
	$H_{10}N^+$	120 0808	120.081	-1 67
		120.0000	120.001	1.07
A2 C2	$_{7}H_{40}N_{4}O_{4}^{+}$	673 3708	673 3719	-1 63
	$\frac{71491000}{7H_{47}N_{6}O_{5}^{+}}$	655 3602	655 3603	-0.15
	$\frac{1}{6}H_{45}N_6O_5^+$	641 3446	641 3455	-1 40
	$\frac{1}{5}$ H ₄₅ N ₆ O ₂ ⁺	597 3548	597 3547	0.17
	$H_{26}N_5O_2^+$	502 2813	502 2821	-1.59
	$\frac{1}{5H_{28}N_5O_5^+}$	488 2867	488 2871	-0.82
	$H_{21}N_4O_2^+$	467 2442	467 2441	0.21
				0.21

	C ₁₈ H ₂₇ N ₂ O ₄ ⁺	335.1965	335.1976	-3.28
	$C_{12}H_{10}N^+$	168.0808	168.0816	-4.76
	C ₇ H ₁₄ NO ₂ ⁺	144.1019	144.1026	-4.86
	C8H10N ⁺	120.0808	120.0814	-5.00
A3	$C_{37}H_{49}N_6O_6^+$	673.3708	673.3725	-2.52
	$C_{37}H_{47}N_6O_5^+$	655.3602	655.3607	-0.76
	C ₃₆ H ₄₅ N ₆ O ₅ ⁺	641.3446	641.3446	0.00
	C ₃₅ H ₄₅ N ₆ O ₃ ⁺	597.3548	597.3541	1.17
	C ₂₉ H ₃₆ N ₅ O ₃ ⁺	502.2813	502.2823	-1.99
	C ₂₅ H ₃₈ N ₅ O ₅ ⁺	488.2867	488.2876	-1.84
	$C_{29}H_{31}N_4O_2^+$	467.2442	467.2444	-0.43
	$C_{21}H_{25}N_4O_2^+$	365.1972	365.1969	0.82
	$C_{18}H_{27}N_2O_4^+$	335.1965	335.1977	-3.58
	$C_{12}H_{10}N^+$	168.0808	168.0816	-4.76
	$C_7 H_{14} NO_2^+$	144.1019	144.1023	-2.78
	$C_8H_{10}N^+$	120.0808	120.0812	-3.33
A4	C ₃₈ H ₅₃ N ₆ O ₁₀ S ⁺	785.3538	785.3534	0.51
	$C_{38}H_{53}N_6O_7^+$	705.397	705.3958	1.70
	C ₃₈ H ₅₁ N ₆ O ₆ ⁺	687.3865	687.3833	4.66
	C ₃₇ H ₄₇ N ₆ O ₅ ⁺	655.3602	655.3584	2.75
	$C_{36}H_{46}N_5O_4^+$	612.3544	612.3525	3.10
	$C_{30}H_{40}N_5O_4^+$	534.3075	534.3076	-0.19
	$C_{30}H_{38}N_5O_3^+$	516.2969	516.2923	8.91
	$C_{30}H_{35}N_4O_3^+$	499.2704	499.2649	11.02
	C ₂₈ H ₃₀ N ₃ O ⁺	424.2383	424.234	10.14
	C ₂₀ H ₂₇ N ₄ O ₃ ⁺	371.2078	371.2057	5.66
	C ₁₈ H ₂₇ N ₂ O ₄ ⁺	335.1965	335.1962	0.89
	$C_{12}H_{10}N^+$	168.0808	168.0807	0.59
	C ₇ H ₁₄ NO ₂ ⁺	144.1019	144.1019	0.00
	$C_8H_{10}N^+$	120.0808	120.0797	9.16
A5	C ₃₈ H ₅₁ N ₆ O ₆ ⁺	687.3865	687.3861	0.58
	$C_{37}H_{47}N_6O_5^+$	655.3602	655.3581	3.20
	$C_{36}H_{46}N_5O_4^+$	612.3544	612.3543	0.16
	$C_{30}H_{38}N_5O_3^+$	516.2969	516.2943	5.04
	C ₃₀ H ₃₅ N ₄ O ₃ ⁺	499.2704	499.27	0.80
	C ₂₈ H ₃₀ N ₃ O ⁺	424.2383	424.2387	-0.94
	$C_{22}H_{29}N_4O_3^+$	397.2234	397.2221	3.27
	$C_{20}H_{27}N_4O_3^+$	371.2078	371.2076	0.54
	$C_{23}H_{20}N_{3}O^{+}$	354.1601	354.1598	0.85
	$C_{22}H_{22}N_3^+$	328.1808	328.181	-0.61
	$C_{14}H_{16}N_{3}^{+}$	226.1339	226.133	3.98
	$C_{12}H_{10}N^+$	168.0808	168.0812	-2.38
	$C_7H_{14}NO_2^+$	144.1019	144.1019	0.00
	$C_8H_{10}N^+$	120.0808	120.0807	0.83

A6	$C_{38}H_{51}N_6O_6^+$	687.3865	687.387	-0.73
	$C_{37}H_{47}N_6O_5^+$	655.3602	655.3611	-1.37
	$C_{36}H_{46}N_5O_4^+$	612.3544	612.3544	0.00
	$C_{30}H_{38}N_5O_3^+$	516.2969	516.2944	4.84
	$C_{30}H_{35}N_4O_3^+$	499.2704	499.2699	1.00
	$C_{28}H_{30}N_3O^+$	424.2383	424.2387	-0.94
	$C_{22}H_{29}N_4O_3^+$	397.2234	397.2224	2.52
	$C_{20}H_{27}N_4O_3^+$	371.2078	371.2081	-0.81
	$C_{23}H_{20}N_3O^+$	354.1601	354.1583	5.08
	$C_{22}H_{22}N_3^+$	328.1808	328.1814	-1.83
	$C_{14}H_{16}N_3^+$	226.1339	226.1338	0.44
	$C_{12}H_{10}N^{+}$	168.0808	168.0811	-1.78
	$C_{7}H_{14}NO_{2}^{+}$	144.1019	144.1016	2.08
	$C_8H_{10}N^+$	120.0808	120.081	-1.67

Table S3

Accuracy data of UPLC method for COB and \mbox{ATZ}

Spiked concentration(μg/ mL)concentration found (in μg/m (mean ± SD; RSD)		Mean recovery (%)
СОВ		
120 (at 80%)	$119.96 \pm 0.41; 0.41$	99.97
150 (at 100%)	$150.13 \pm 0.10; 0.10$	100.08
180 (at 120%)	$180.17 \pm 0.20; 0.20$	100.09
ATZ		
240 (at 80%)	$240.37 \pm 0.34; 0.33$	100.15
300 (at 100%)	$300.24 \pm 0.13; 0.13$	100.08
360 (at 120%)	$359.97 \pm 0.31; 0.31$	99.99

Table S4

Precision data of UPLC method for COB and ATZ

Concentration	Method precision	Intra-day precision	Inter-day precision	
$(\mu g/mL) n = 6$	Mean% Assay ±	Mean% Assay ±	Mean% Assay ±	
	SD;%RSD	SD;%RSD	SD;%RSD	
СОВ				
150	99.81 ± 0.57; 0.57	99.83±0.53; 0.53	99.99± 0.34; 0.34	
ATZ				

300	99.97± 0.46; 0.46	99.96± 0.42; 0.42	99.81± 0.44; 0.44
1			

Table S5

Robustness data of UPLC method for COB and ATZ

	Variation	Tailing		Retention time (min)		% Assay	
Conditions	of parameters	COB	ATZ	СОВ	ATZ	COB	ATZ
	0.2	1.72	1.59	10.50	11.58	98.12	98.54
Flow rate	0.3	1.72	1.45	9.26	10.13	99.05	99.6
(111/11111)	0.4	1.87	1.64	8.62	9.36	100.4	100.2
Column oven temperature (°C)	25	1.69	1.56	9.22	10.05	98.09	98.12
	30	1.70	1.49	9.22	10.09	99.4	99.6
	35	1.69	1.50	9.13	10.03	100.06	100.12
Wavelength (nm)	243	1.68	1.45	9.26	10.13	98.01	100.06
	245	1.66	1.44	9.26	10.13	99.23	100.15
	247	1.66	1.45	9.26	10.13	99.67	100.19