Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electric Supplementary Information

Photodeposition of gold nanoparticles on silica nanoparticles using carbon dots as excellent electron donors

Dayeon Choi and Du-Jeon Jang*

Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea

E-mail: djjang@snu.ac.kr

Experimental section

Materials

All chemicals were used as received: HAuCl₄·3H₂O (s, 99.9%), tetraethyl orthosilicate (TEOS, 1, \geq 99%), 28-30% NH₄OH(aq), 3-aminopropyl triethoxysilane (APTES, 1, \geq 98%), citric acid (s, 99.5%) from Sigma-Aldrich. Isopropyl alcohols (IPA, 1) and ethanol(1) were from Dajeong Chemicals, and purified water (>15 MΩcm) from an ELGA PURELAB Option-S system was used throughout the experiments.

Preparation of SiO₂ nanospheres

Hard supporters of silica nanospheres were prepared via the sol-gel reaction of TEOS under base catalysis following the Stöber method.⁵ 50 mL of ethanol, 3.55 mL of water, 3.1 mL of TEOS, and 3.25 mL of 28-30% NH₄OH(aq) were mixed and stirred vigorously overnight. The product was centrifuged at 9,000 rpm for 10 min, rinsed three times with water and ethanol, and then dried at 60 °C for 5 h.

Synthesis of Cdots-decorated SiO₂ (Cdots-SiO₂) nanocomposites

Firstly, the surface modification of SiO₂ nanospheres with APTES was performed to synthesize Cdots directly on surfaces of SiO₂ nanospheres. 100 mg of as-prepared SiO₂ nanospheres was dispersed in 19.5 mL of IPA with sonication. Then, the mixture was added with 0.50 mL of APTES and stirred at 60 °C for 2 h. Then, produced APTES-modified SiO₂ nanospheres were centrifuged at 9,000 rpm for 10 min, washed with IPA several times to remove remaining APTES, and re-dispersed in 20 mL of IPA. Then, 0.10 mmol of citric acid was dissolved in 10 mL of water and added to the above colloidal solution of APTES-modified SiO₂ nanospheres. The resultant mixture was stirred for 10 min, transferred into a Teflon-lined stainless-steel autoclave of 50 ml, and maintained at 180 °C for 3 h. After the reaction, the autoclave was cooled down to room temperature, and the product was centrifuged, rinsed three times with ethanol, and re-dispersed in 5.0 mL of ethanol to produce a 20 g L⁻¹ Cdots-SiO₂ colloidal solution.

Photodeposition of gold nanoparticles on Cdots-SiO2 nanocomposites

Au/Cdots-decorated SiO₂ nanocomposites were synthesized by phtodepositing gold on surfaces of Cdots-SiO₂ nanocomposites under light irradiation. 15 mL of water and 5.0 mL of ethanol, and 10 μ L of the as-prepared Cdots-SiO₂ colloidal solution were mixed. The mixture was transferred into a quartz reactor, stirred for 10 min, placed 30 cm away from a 300 W Schoeffel LPS 255 HR xenon arc lamp with a focusing lens, and irradiated for a few seconds

with stirring. The reaction was started by the addition of a specific amount of a HAuCl₄ stock solution (12.7 mM in ethanol) and stopped by turning off the Xe lamp; the concentration of the gold precursor in 20 mL of the final photodeposition reaction mixture was 6.35 μ M and the light intensity at 250 nm was 327 mW. Then, the product was separated by centrifugation at 12,000 rpm for 10 min, washed with ethanol, and re-dispersed in ethanol. Hereafter, the product of Au/Cdots-decorated SiO₂ nanocomposites will be designated as Au/Cdots-SiO₂ nanocomposites.

Characterization

While transmission electron microscopy (TEM) images were measured using a Hitachi H-7600 microscope operating at 100 kV, high-resolution TEM (HRTEM) images and energydispersive X-ray (EDX) elemental mappings were measured utilizing a JEOL JEM-2100F microscope. Absorption spectra were measured using a Scinco S3100 UV-vis spectrophotometer, and field-emission scanning electron microscopy (FE-SEM) images were obtained with a ZEISS MERLIN Compact microscope. Light intensities were detected using a Gentec-EO Integra photodetector.

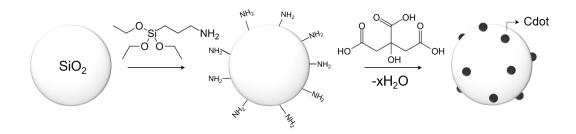


Fig. S1 Synthetic route of a Cdots-SiO₂ nanocomposite using citric acid and APTES.

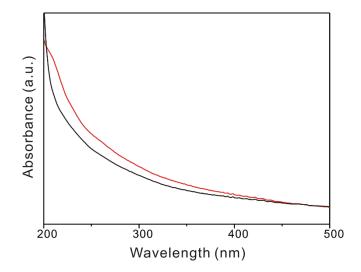


Fig. S2 Absorption spectra of SiO₂ nanospheres (black) and Cdot-SiO₂ nanocomposites (red).

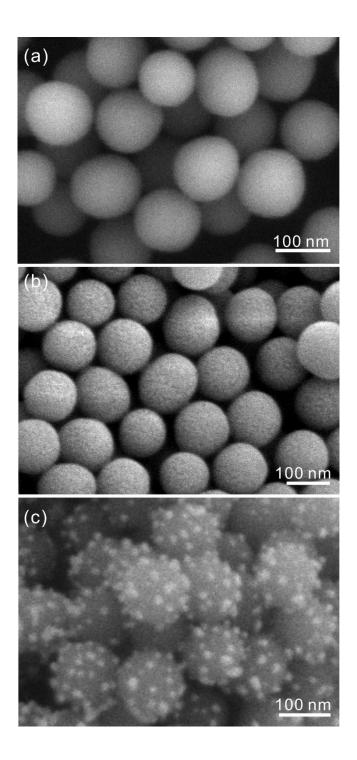


Fig. S3 FE-SEM images of SiO_2 nanospheres (a), Cdots- SiO_2 nanocomposites (b), and Au/Cdots- SiO_2 nanocomposites (c).

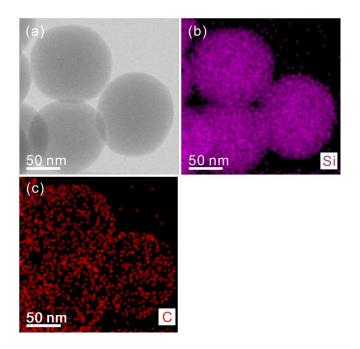
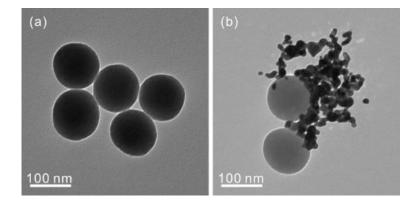



Fig. S4 HRTEM image (a) and EDX elemental maps (b,c) of Cdots-SiO₂ nanocomposites.

Fig. S5 TEM images of Au/Cdots-SiO₂ nanocomposites prepared with Cdots-SiO₂ nanospheres under the dark (a) and with Cdots-free SiO₂ nanospheres under light irradiation (b).

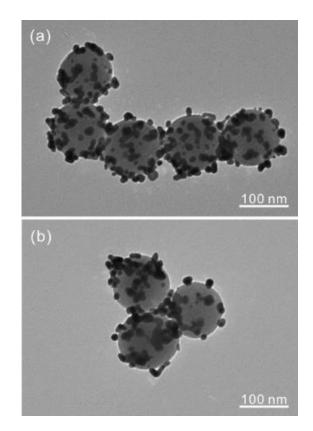


Fig. S6 TEM images of as-prepared Au/Cdots-SiO₂ nanocomposites prepared via photodeposition at light intensities of 111 mW (a) and 57 mW (b).

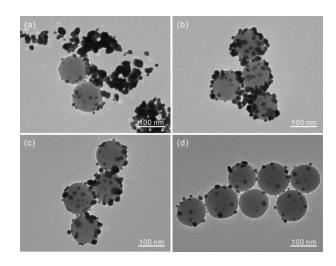


Fig. S7 TEM images of as-prepared Au/Cdots-SiO₂ nanocomposites prepared via photodeposition in 20 mL of various ethanol-water solutions: $V_{ethanol}/V_{water}$ values are 0/20 (a), 10/10 (b), 15/5 (c), and 20/0 (d).