Supporting Information

Solvent-free Aerobic Selective Oxidation of Hydrocarbons Catalyzed by Porous Graphitic Carbon Encapsulate Cobalt Composites

Yuchen Jiang, Chenjun Zhang, Yue Li, Pingping Jiang, Jiusheng Jiang, Yan Leng*

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China. E-mail: <u>yanleng@jiangnan.edu.cn</u>

Figure S2. (A) Nitrogen adsorption-desorption isotherms of $Co_{0.6} @ C_{800}$, $Co @ C_{800}$ and C_{800} . (B) Pore size distribution of a) $Co_{0.6} @ C_{800}$, b) $Co @ C_{800}$ and C_{800} .

Figure S3. HTEM images of $Co@C_{800}$.

Figure S4. (A) C 1s spectra, and (B) XPS survey spectrum of Co@C₈₀₀.

Figure S5. Catalyst recycling in oxidation of ethylbenzene with O_2 over $Co@C_{800}$. At the fifth run, the recovered catalyst was retreated through calcination at 600 °C in Ar.

Figure S6. FTIR spectra of reused $Co@C_{800}$ after the first four reactions before calcination.

Scheme S1. Proposed mechanism for the ethylbenzene oxidation over the Co $@C_{800}$ using O_2 as an oxidant.

Resorcinol (g)	Formaldehyde	Cobalt acetate	Lazy glycine	Yield [%]
	(37 wt%) (g)	(g)		
3.0	4.42	1.5	0.5	22.0%
3.0	4.42	1.5	1.0	46.42%
3.0	4.42	1.5	1.5	45.21%

Table S1. The effect of the lazy glycine amount on the hybrid yield.

Table S2.	The ratio	analysis	of the	peaks in	XPS s	spectra	of the catal	vsts
	1110 10000	, , , , , , , , , , , , , , , , , , , ,	01 m	petric in			01 0110 000000	,000

	Content ^a (at%)					
Catalysts	С	Ν	0	Со		
Co@C ₈₀₀	94.743	1.302	3.048	0.907		

^aThe contents of various elements were measured by X-ray photoelectron spectroscopy.

Table S3. Catalytic performance of $Co@C_{800}$ and various reported catalytic system in literature for selective oxidation of ethylbenzene.

Entry	Catalyst	Т (К)	n _{FA} /n _{metal}	TOF (h ⁻¹)	Reference			
noble metal catalysts (entry 1-4)								
1	$[(pymox-Me_2)RuCl_2]^+$ BF_4^-	293	100	5ª	Org. Lett., 2009, 11, 1567- 1569. ^{\$1}			
2	Pd@C-Glu _A - 550	393	200	245 ^a	Nat. commun., 2013, 4, 1593. ⁸²			
3	AuNPs@3D- (N)GFs	273	666	128 ^a	Appl. Organomet. Chem., 2015, 29, 456-461. ^{S3}			
4	nano Ag/ZnO (2)	413	5417	130 ^a	J. Mol. Catal. A: Chem., 2010, 331, 40-49. ^{S4}			
Traditio	Traditional small-scale test use Solvent (entry 5-10)							
5	Co/phen@C B-800-L	353	1000	124 ^a	Catal. Commun., 2017, 97, 130- 133. ^{\$5}			
6	complex 1	353	100	4.4 ^a	Appl. Catal., A, 2017,531, 45- 51. ⁸⁶			
7	CuTSPc@3 D-(N)GFs	273	250	20 ^a	Chem. Commun., 2014, 50, 7855-7857. ^{\$7}			
8	Fe-N-C-700	273	175	33 ^a	J. Am. Chem. Soc. 2017, 139, 10790–10798. ⁵⁸			
9	Co/AC- salen-400	353	132	13 ^a	Phys. Chem. Chem. Phys. 2017, 19, 4967-4974. ⁸⁹			
10	Mn-PPOP-1	273	20	1.6 ^a	Dalton Trans., 2017, 46, 11372- 11379. ^{S10}			
11	Mn-MOF-74	408	1333	33 ^a	Dalton Trans., 2017, 46, 8415- 8421. ^{S11}			

Solvent-free largescale test used O ₂ as oxidant (entry 12-21)							
12	Mn(OH)x//γ- Al ₂ O ₃	408	1333	35 ^a	Catal. Sci. Technol., 2016, 6, 442-448. ^{S12}		
13	CoNCB-2	393	20000	2064 ^b	ChemCatChem, 2016, 8, 1782- 1787. ^{S13}		
14	Co–N–C/ CeO ₂	393	2826	140 ^a	Phys. Chem. Chem. Phys., 2015, 17, 14012-14020. ^{S14}		
15	Mn-MOF-74	408	1333	33 ^a	Dalton Trans., 2017,46, 8415- 8421. ^{S15}		
16	Mn–N– C@SiO ₂	393	12177	3229 ^b	Chem. Commun., 2016, 52, 5577-5580. ^{S16}		
17	FP-Co-SiO ₂	393	7744	480 ^a	Chem. Commun., 2011, 47, 1336-1338. ^{S17}		
18	Co-N-C- 0.3/SiO ₂	393	15543	1150 ^b	Phys. Chem. Chem. Phys., 2016, 18, 4635-4642. ^{S18}		
19	MnS-1	383	2215	106 ^a	Microporous Mesoporous Mater., 2011, 146, 166-171. ⁸¹⁹		
20	Co-N-C-800	393	1016	20^{a}	J. Mol. Catal. A: Chem., 2015, 408, 91-97. ⁵²⁰		
21	Co@C ₈₀₀	393	38857	4514 ^b	This work		

$$^{a}\text{TOF}(h^{-1}) = \frac{\text{the amount of ethylbenzene converted [mol]}}{\text{Total mol metal atoms [mol]} \cdot \text{time [h]}}$$

 ${}^{b}\text{TOF}(h^{-1}) = \frac{\text{the amount of ethylbenzene converted [mol]}}{\text{metal atoms on the surface [mol]} \cdot \text{time [h]}}$

Supplementary References

S1 C. S. Yi, K. H. Kwon and D. W. Lee, *Org. Lett.*, 2009, **11**, 1567-1569.

S2 P. Zhang, Y. Gong, H. Li, Z. Chen and Y. Wang, *Nat. Commun.*, 2013, 4, 1593.

S3 M. Mahyari, M. S. Laeini, A. Shaabani and H. Kazerooni, *Appl. Organomet. Chem.*, 2015, **29**, 456-461.

S4 M. J. Beier, B. Schimmoeller, T. W. Hansen, J. E. Andersen, S. E. Pratsinis and J. D. Grunwaldt, *J. Mol. Catal. A: Chem.*, 2010, **331**, 40-49.

S5D.H.Tu, Y.Li, J.Li, Y.J.Gu, B.Wang, Z.T.Liu and J.Lu, *Catal. Commun.*, 2017, **97**, 130-133.

S6 S. B. Khomane, D. S. Doke, M. K. Dongare, S. B. Halligudi and S. B. Umbarkar, *Appl. Catal.*, A 2017, **531**, 45-

51.S7 M. Mahyari, M. S. Laeini and A. Shaabani, Chem. Commun. 2014, 50, 7855-7857.

S8 W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao and T. Zhang, *J. Am. Chem. Soc.*, 2017, **139**, 10790-10798.

S9 K. Nakatsuka, T. Yoshii, Y. Kuwahara, K. Mori and H. Yamashita, *Phys. Chem. Chem. Phys.*, 2017, **19**, 4967-4974.

S10 Z. D. Ding, W. Zhu, T. Li, R. Shen, Y. Li, Z. Li and Z. G. Gu, *Dalton Trans.*, 2017, **46**, 11372-11379.

S11Y. Kuwahara, Y. Yoshimura and Yamashita, H. Dalton Trans., 2017, 46, 8415-8421.

S12 Y. Kuwahara, Y. Yoshimura and Yamashita, H. Catal. Sci. Technol., 2016, 6, 442-448.

S13 Y. Chen, L. Fu, Z. Liu and Y. Wang, *ChemCatChem*, 2016, **8**, 1782-1787.

S14 Y. Chen, S. Zhao and Z. Liu, *Phys. Chem. Chem. Phys.*, 2015, **17**, 14012-14020.

S15 Y. Kuwahara, Y. Yoshimura and H. Yamashita, *Dalton Trans.*, 2017, 46, 8415-8421.

S16 L. Fu, S. Zhao, Y. Chen and Z. Liu, *Chem. Commun.*, 2016, **52**, 5577-5580.

S17 C. Chen, J. Xu, Q. Zhang, Y. Ma, L. Zhou and M. Wang, *Chem. Commun.*, 2011, **47**, 1336-1338.

S18 C. Yang, L. Fu, R. Zhu and Z. Liu, *Phys. Chem. Chem. Phys.*, 2016, **18**, 4635-4642. S19 N. N. Tušar, S. C. Laha, S. Cecowski, I. Arčon, V. Kaučič and R. Gläser, *Microporous Mesoporous Mater.*, 2011, **146**, 166-171.

S20 L. Fu, Y. Chen and Z. Liu, J. Mol. Catal. A: Chem., 2015, 408, 91-97.