Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Dissolution and Transesterification of Cellulose in y-

valerolactone Promoted by Ionic Liquids

Chaoping Yuan,^a Wentao Shi,^b Peng Chen,^b Lihua Zhang,^aGang Hu,^a Longming Jin,^a Haibo Xie,^{*a}Qiang Zheng,^a Shengjun Lu^{*a}

^aDepartment of Polymer Materials and Engineering College of Materials and Metallurgy, Guizhou University, Huaxi District, Guiyang, 550025, PR.China

^bNingbo Key Laboratory of Polymer Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academic of Science, Ningbo 315201, P.R.China

Fig.S1 Arrhenius equation plots for different X_{ILs} in the OESs: a ($X_{ILs} = 1.0$), b ($X_{ILs} = 0.8$), c ($X_{ILs} = 0.6$), d ($X_{ILs} = 0.4$), respectively, at 4 wt% cellulose concentration. Solid lines are fit lines ($R^2 \ge 99.6\%$).

Fig.S2 FT-IR spectra of α -cellulose (spectrum A) and α -cellulose ester CE-2, (spectrum B); CE-1, (spectrum C); CE-3, (spectrum D, DS = 3.00).

Fig.S3 ¹H-NMR spectrum of α -cellulose chloroacetate sample CE-4 (DS = 1.43) in DMSO-d₆. Reaction conditions: 10 wt% α -cellulose solution, vinyl chloroacetate /AGU = 3:1, 80°C, 4h.

Fig.S4 ¹H-NMR spectrum of α -cellulose pivalate sample CE-5 (DS = 3.00) in DMSO-d₆. Reaction conditions: 10 wt% cellulose solution, vinyl pivalate/AGU = 3:1, 80°C, 4h. The "OAc" marked peak belongs to the α -carbon of additional bounded acetate esters.