Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Controlled synthesis of Pt and Co₃O₄ dual-functionalized In₂O₃ nanoassemblies for room temperature detection of carbon monoxide

Kuan-Wei Chen, Jen-Pu Liu, Yu-Shan Hsu, Chao-Heng Liu, Ying-Hao Pai, and Chun-Hua Chen*

Department of Materials Science and Engineering, National Chiao Tung University 1001 Ta-Hsueh Road, Hsin-Chu, Taiwan, 30010, ROC.

Figure S1. XRD pattern of the prepared In₂O₃ nanocomposites.

Fig. S2 XRD patterns of pristine In_2O_3 nanostructures and Co_3O_4/In_2O_3 nanostructures with various mole fraction of Co/In.

Figure S3. SEM-EDX mapping of the prepared Co₃O₄-In₂O₃ nanocomposites. The measured atomic ratio of Co/In is 1.7 % (for the specimen of 3 mol%).

Figure. S4 The size distributions of (a),(b) the Pt nanoparticles, and (c),(d) the In₂O₃ nanobundles. The averaged particles size and column width is 2.2 nm and 10.6 nm respectively for Pt nanoparticles and In₂O₃ nanobundles.