Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

+Electronic Supplementary Information

The Influence of Copper Addition on Electrical Conductivity and Charge Transfer Resistance of Reduced Graphene Oxide (rGO)

Ferry Iskandar,^{*a,b,c} Oktaviardi Bityasmawan Abdillah,^a Erythrina Stavila,^c and Akfiny Hasdi Aimon^{a,b}

*email address: ferry@fi.itb.ac.id

 ^a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132, Indonesia. E-mail: ferry@fi.itb.ac.id
^b National Center for Sustainable Transportation Technology (NCSTT), Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132, Indonesia
Research Center for Nanosciences and Nanotechnology (RCNN). Institut Teknologi Bandung

^c Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia

Table S1. Calculated crystalline size (D) and interlayer spacing (d) values of the samples including of GO, rGO, and samples rGO with copper addition **A–E**.

Sample	20 (°)	К	λ (nm)	β (°)	cos θ	D (nm)	d (nm)	Miller indices	Crystal
GO	9.69	0.940	0.154	1.39	0.99	5.73	0.91	002	GO
	42.12			0.79	0.93	10.73	0.21	100	GO
rGO	24.64			4.52	0.98	1.88	0.36	002	rGO
	42.34			2.42	0.90	3.79	0.18	100	rGO
Sample A	24.40			4.69	0.98	1.81	0.36	002	rGO
	42.56			2.41	0.93	3.69	0.21	100	rGO
	43.40			2.26	0.93	3.95	0.21	111	Cu
	49.02			0.51	0.91	17.87	0.19	-2 0 2	CuO
	50.93			0.76	0.90	12.09	0.18	200	Cu
	72.62			0.54	0.81	19.06	0.13	311	CuO
	77.82			0.76	0.78	14.03	0.12	222	Cu ₂ O
Sample B	24.45			4.59	0.98	1.85	0.36	0 0 2	rGO
	43.17			1.01	0.93	8.83	0.21	100	rGO
	43.36			1.87	0.93	4.77	0.21	111	Cu
	49.15			0.92	0.91	9.91	0.19	-202	CuO
	50.84			1.27	0.90	7.23	0.18	200	Cu
	72.62			0.52	0.81	19.79	0.13	311	CuO
	74.05			0.92	0.80	11.29	0.13	220	Cu

Sample C	24.34		6.60	0.98	1.29	0.37	002	rGO
	42.64		1.11	0.93	8.02	0.21	100	rGO
	43.23		0.44	0.93	20.39	0.21	111	Cu
	50.36		0.39	0.90	23.44	0.18	200	Cu
	74.08		3.40	0.94	2.60	0.23	220	Cu
	78.12		0.78	0.78	13.65	0.12	222	Cu ₂ O
Sample D	24.47		5.94	0.98	1.43	0.36	002	rGO
	42.59		0.70	0.93	12.72	0.21	100	rGO
	43.29		0.97	0.90	9.41	0.18	111	Cu
	50.43		0.59	0.90	15.53	0.18	$2\ 0\ 0$	Cu
	74.16		0.49	0.80	21.10	0.13	220	Cu
	78.05		0.62	0.78	17.29	0.12	222	Cu ₂ O
Sample E	24.31		5.27	0.98	1.61	0.37	002	rGO
	36.25		0.49	0.95	17.73	0.25	111	Cu ₂ O
	42.14		0.65	0.93	13.67	0.21	200	Cu ₂ O
	43.12		1.10	0.93	8.09	0.21	111	Cu
	49.12		2.17	0.91	4.20	0.19	-202	CuO
	50.33		1.00	0.91	9.13	0.18	200	Cu
	61.19		0.67	0.86	14.41	0.15	220	Cu ₂ O
	72.65		0.49	0.81	20.91	0.13	311	CuO
	73.76		0.20	0.80	50.83	0.13	311	Cu ₂ O
	77.84		0.71	0.78	15.05	0.12	222	Cu ₂ O

Fig S1 Raman spectra of GO, rGO, and sample B.

Fig. S2 SEM pictures of (a) rGO, (b) sample **A**, (c) sample **B**, (d) sample **C**, (e) sample **D**, and (f) sample **E**. The red dash lines indicated copper particle in the samples.

Fig. S3 SEM pictures of sample **E** (a) surface of rGO and (b) the edge of graphene sheets with Cu or Cu₂O particle.

Fig. S4 EDX result of graphene oxide.

Fig. S5 EDX result of reduced graphene oxide.

Fig. S6 EDX result of sample A

Fig. S8 EDX result of sample D

Fig. S9 EDX result of sample E

Fig. S10 Possible mechanism reaction of reduction process of GO using hydrazine and further reduction of rGO due to annealing process.

Fig. S11 The influence of temperature per minute under microwave irradiation conditions during reduction process of GO.

Fig. S12 The illustration on the possibility of Cu, CuO, or Cu₂O in the rGO (top view and side view) after the reduction of GO and CuO using hydrazine as the reducing agent under microwave irradiation conditions when the copper in the reaction mixture were (a) 1 wt%, (b) 2 and 3 wt%, and (c) 5 wt%.

Fig. S12 shows the illustration on the possibility of Cu, Cu₂O, or CuO after reduction process. There are blue and red circles on the graphene oxide are displayed in Fig. S12. The blue circles indicate the possible oxygen-containing functional groups to be reduced by hydrazine. The red circle represents the potential oxygen-containing group to be removed by microwave irradiation.²⁹ The defect from the vacancy in rGO sheets potentially occurred during oxidation or exfoliation process. This defect consequently disrupts the electron mobility on the graphene sheet, which led to the decrease of electrical conductivity.