Electronic Supplementary Information

Living cells imaging and sensing for hydrogen sulfide by a high-efficiency fluorescent Cu-doped carbon quantum dots

Shujuan Zhuo,*^{ab} Lingling Gao,^c Ping Zhang,^a Jinyan Du^a and Changqing Zhu*^a

^aKey Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Key Laboratory of Chemo-Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China

^bAnhui Meijia New Materials Company Limited, Wuhu, 241000, PR China ^cAnhui Xuancheng Product Quality Supervision and Inspection Institute, Xuancheng, 242000, PR China

*Corresponding authors, E-mail addresses: sjzhuo@mail.ahnu.edu.cn (S. Zhuo), zhucq@mail.ahnu.edu.cn (C. Zhu).

Fig. S1 (A) Fluorescence spectra of the Cu-CQDs at different excitation wavelengths. (B) The corresponding normalized fluorescence spectra.

Fig. S2 XRD pattern of as-prepared Cu-CQDs.

Fig. S3 Wide scan XPS full spectrum of Cu-CQDs.

Fig. S4 High-resolution XPS spectrum of Cu $2p_{3/2}$.

Fig. S5 TGA curve of as-prepared Cu-CQDs.

Fig. S6 The effect of pH on the fluorescence intensity of Cu-CQDs.

Fig. S7 Fluorescence response and linear plot of Cu-CQDs probe with increment of NaHS in presence of human blood serum.

Fig. S8 UV-vis absorption spectra of Cu-CQDs in the absence and presence of NaHS.

Fig. S9 Fluorescence response of bare CQDs toward NaHS.

Fig. S10 The fluorescence lifetimes of Cu-CQDs (black line) and Cu-CQDs+NaHS (red line).

Fig. S11 Time scan of Cu-CQDs measured by fluorescence spectrophotometer upon illumination at 365 nm UV light.

Fig. S12 Cells viability (%) obtained by MTT assay. Lung cancer cells were incubated with Cu-CQDs at the concentration of 0, 50, 100, 200 and 500 μ g mL⁻¹ for 24 h. The error bars represent the standard deviation of three measurements.

Fig. S13 Cu-CQDs based system toward various potential interfering substances. The concentrations of all anions are 1 mM. F_0 and F are fluorescent intensities of the Cu-CQDs before and after adding the corresponding substances, respectively. The error bars represent the standard deviation of three measurements.

Fig. S14 Cu-CQDs based system toward various metal ions. The concentrations of all tested sbustances are 1 mM. F_0 and F are fluorescent intensities of the Cu-CQDs before and after adding the corresponding substances, respectively. The error bars represent the standard deviation of three measurements.

Probe system	Linear range (µM)	Detection limit (nM)	Refs.
DCM-PBA	0-10	1.1	1
NIR	0-200	270	2
Lyso-Nap	1-100	330	3
DUT-52-(NO ₂) ₂	100-700	20000	4
Red-emitting	1-7	90	5
Ratiometric	0-100	2400	6
DPP-NO ₂	0-30	5.2	7
MOF	0-100	16	8
Metal complex	30-90	2240	9
Two-photon	0-5	20	10
Cu-CQDs	2-500	500	This work

Table S1 Comparison of analytical parameters between present probe and some other fluorescent probe for the sensing of HS⁻.

References

- 1 J.X. Men, X.J. Yang, H.B. Zhang and J.P. Zhou, *Dyes Pigments*, 2018, **153**, 206–212.
- 2 J.C. Xiong, L.L. Xia, Q.L. Huang, J.X. Huang, Y.Q. Gu and P. Wang, *Talanta*, 2018, 184, 109–114.
- 3 O.Y. Juan, W.L. Jiang., K.Y. Tan, H.W. Liu, S.J. Li, J. Liu, Y.F. Li and C.Y. Li, *Sens. Actuators B*, 2018, **260**, 264–273.
- 4 R. Dalapatia, S.N. Balajib, V. Trivedib, L. Khamaria and S. Biswasa, *Sens. Actuators B*, 2017, **245**, 1039–1049.
- 5 S. Chen, P. Hou and X.Z. Song, Sens. Actuators B, 2015, 221, 951–955.

- 6 Y. Jiang, Q. Wu and X.J. Chang, *Talanta*, 2014, **121**, 122–126.
- 7 L.Y. Wang, X.G. Chen and D.R. Cao, New J. Chem., 2017, 41, 3367-3373.
- 8 Y. Ma, H. Su, X. Kuang, X.Y Li, T.T. Zhang and B. Tang, *Anal. Chem.*, 2014, **86**, 11459–11463.
- 9 Z.J. Hai, Y.J. Bao, Q.Q. Miao, X.Y. Yi and G.L. Liang, Anal. Chem., 2015, 87, 2678–2684.
- 10 G.J. Mao, T.T. Wei, X.X. Wang, S.Y. Huan, D.Q. Lu, J. Zhang, X.B. Zhang, W.H. Tan, G.L. Shen and R.Q. Yu, *Anal. Chem.*, 2013, **85**, 7875–7881.