Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Water-soluble Superbulky (η^6 -*p*-cymene) Ruthenium(II) Amine: Active Catalyst in Oxidative

Homocoupling of Arylboronic Acids and Hydration of Organonitriles

Muthukumaran Nirmala,^a Mannem Adinarayana,^a Karupnaswamy Ramesh,^a Mannarsamy Maruthupandi ,^a Moulali Vaddamanu,^a Gembali Raju^a and Ganesan Prabusankar^{*a}

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana, INDIA. 502 285 Fax: +91 40 2301 6032;

Tel: +91 40 23016089; E-mail: prabu@iith.ac.in

Fable of contents Page. N	lo
1. Spectra of complex	-6
1.1 ¹ H NMR spectrum for complex (2)	;
1.2 ¹³ C NMR spectrum for complex (2)	ł
1.3 IR spectrum for complex (2)	
2. Catalysis	-36
2.1 General information.	6
2.1.1 General procedure for the homocoupling of arylboronic acids to form biaryls2.1.2 General procedure for the hydration of organonitriles	6 6
2.2 Characterization data of amide products	'-13
2.3 Characterization data of homocoupled products	5-17
2.4 Representative ¹ H NMR spectra for amide products	3-26
2.5 Representative ¹ H NMR spectra for homocoupled products	-36

Figure S1. ¹H NMR spectrum of $[(\eta^6-p\text{-cymene})\text{-RuCl}_2(C_6H_2(C_6H_5)_4CH_3NH_2)]$ complex (2) in CDCl₃ at 27°C.

Figure S2. ¹³C NMR spectrum of $[(\eta^6-p\text{-cymene})-\text{RuCl}_2(C_6\text{H}_2(C_6\text{H}_5)_4\text{CH}_3\text{NH}_2)]$ complex (2) in CDCl₃ at 27°C.

Figure S3. IR spectrum of $[(\eta^6-p-\text{cymene})-\text{RuCl}_2(\text{C}_6\text{H}_2(\text{C}_6\text{H}_5)_4\text{CH}_3\text{NH}_2)]$ complex (2).

2. Catalysis:

2.1 General Experimental Procedure:

General procedure for the homocoupling of arylboronic acids to form biaryls

The arene-ruthenium- catalyzed homocoupling of arylboronic acids was carried out according to the previously reported method [19a]. Arylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and $Cu(OAc)_2$ (0.300 g, 1.5 mmol) was added to a reaction tube containing water (5 mL) and [Ru]-catalyst **2** (0.029 g, 4 mol %). The reaction mixture was stirred for the preferred reaction time at room temperature. The procession of reaction was examined by thin layer chromatography (TLC). After completion of the reaction, it was extracted with ethyl acetate (3 × 10 mL). The organic layer was alienated and dried with anhydrous Na₂SO₄ to expel moisture. The solvent was evaporated under reduced pressure to get the desired product. The product formation was identified by ¹H NMR. Isolated yield was computed by using column chromatography with Hexane: EtOAc (99:1 or 95:5 v/v) as eluent.

General procedure for the hydration of nitriles

To a stirred solution of ruthenium(II) complex $[(\eta^6-p\text{-cymene})\text{-RuCl}_2(C_6H_2(C_6H_5)_4CH_3NH_2)]$ (2) (0.029 g, 0.04 mmol, 4 mol %, dissolved in 5 ml of water) in a round bottom flask, was added a nitrile (1 mmol) under open air conditions. The reaction mixture was stirred at room temperature for a pertinent period of time. After culmination of the reaction, the reaction mixture was extracted with dichloromethane. The organic layer was alienated and dried with sodium sulfate to expel moisture. The product was filtered and evaporated under reduced pressure. The crude reaction mixture was purified by column chromatography using diethyl ether as eluent. The identity of the resulting amides was assessed by ¹H NMR spectroscopy.

2.2 Characterization data of amide compounds Chart 1, Entry 1-12

Benzamide (Chart 1, Entry 1)

The reaction of benzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 98 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.87 – 7.85 (m, 2H, ArH), 7.71- 7.48 (m, 3H, ArH), 6.33 (brs, 2H, NH₂).

4-methoxybenzamide (Chart 1, Entry 2)

The reaction of 4-methoxybenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 82 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.93 – 7.77 (m, 3H, ArH), 7.18 (brs, 2H, NH₂), 6.93-6.91 (d, 2H, J = 8 Hz, ArH), 3.77 (s, 3H, -OCH₃).

4-chlorobenzamide (Chart 1, Entry 3)

The reaction of 4-chlorobenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 99 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.10 (brs, 2H, NH₂), 7.91 – 7.90 (m, 1H, ArH), 7.86-7.85 (d, 1H, J = 1.6 Hz, ArH), 7.85-7.69 (m, 1H, ArH).

4-methylbenzamide (Chart 1, Entry 4)

The reaction of 4-methylbenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 87 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.89-7.87 (m, 1H, ArH), 7.76 – 7.29 (m, 1H, ArH), 7.69-7.66 (m, 2H, ArH), 6.17 (brs, 2H, NH₂), 2.37 (s, 3H, -CH₃).

4-hydroxybenzamide (Chart 1, Entry 5)

The reaction of 4-hydroxybenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 87 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 12.94 (s, 1H, -OH), 8.41 (brs, 2H, NH₂), 7.84-7.71 (m, 2H, ArH), 7.62 – 7.59 (m, 1H, ArH).

4-nitrobenzamide (Chart 1, Entry 6)

The reaction of 4-nitrobenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 99 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.29 (d, 2H, J = 7.2 Hz, ArH), 8.09 (d, 2H, J = 6.9 Hz, ArH), 7.89 (brs, 2H, NH₂).

4-bromobenzamide (Chart 1, Entry 7)

The reaction of 4-bromobenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 99 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (brs, 2H, NH₂), 7.82 -7.79 (m, 2H, ArH), 7.52 (m, 2H, ArH).

4-formylbenzamide (Chart 1, Entry 8)

The reaction of 4-formylbenzonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 95 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 9.88 (s, 1H, -CHO), 8.43-8.22 (m, 2H, ArH), 8.12-8.07 (m, 2H, ArH), 7.43 (brs, 2H, NH₂).

2-naphthamide (Chart 1, Entry 9)

The reaction of 2-naphthonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 74 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.01-7.98 (m, 2H, ArH), 7.84-7.59 (m, 4H, ArH), 7.50 (brs, 2H, NH₂).

Acrylamide (Chart 1, Entry 10)

The reaction of acrylonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H_2O under aerobic conditions. The title compound was recovered as a white solid in 71 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 6.52-6.21 (m, 2H, ArH), 6.19 (m, 1H, ArH), 6.97 (brs, 2H, NH₂).

Propionamide (Chart 1, Entry 11)

The reaction of propionitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 96 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 6.29 (brs, 1H, NH₂), 5.98 (brs, 1H, NH₂), 2.19 (q, 2H, - CH₂), 1.09 (t, 3H, -CH₃).

2.3 Characterization data of amide compounds Chart 2, Entry 1-7

Isonicotinamide (Chart 2, Entry 1)

The reaction of isonicotinonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 97 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.34-8.32 (s, 1H, J = 8.4 Hz, ArH), 8.16-8.14 (d, J = 8 Hz, ArH), 7.86-7.62 (m, 2H, ArH), 7.53 (brs, 2H, NH₂).

Nicotinamide (Chart 2, Entry 2)

The reaction of nicotinonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 99 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.29-8.02 (s, 1H, J = 7.8 Hz, ArH), 7.94-7.83 (d, J = 6.2 Hz, ArH), 7.59 -7.44 (m, 2H, ArH), 7.12 (brs, 2H, NH₂).

Quinoline-3-carboxamide (Chart 2, Entry 3)

The reaction of nicotinonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 93 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 9.19 (s, 1H, ArH), 8.27-8.18 (m, 4H, ArH), 7.69 (brs, 2H, NH₂), 7.65 – 7.03 (m, 2H, ArH).

Pyrazin-2-carboxamide (Chart 2, Entry 4)

The reaction of pyrazine-2-carbonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 96 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 9.87 (s, 1H, ArH), 9.03-8.94 (m, 2H, ArH), 8.21 (brs, 2H, NH₂).

Furan-2-carboxamide (Chart 2, Entry 5)

The reaction of furan-2-carbonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a brown solid in 96 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.57-7.55 (d, J = 8.8 Hz, 1H, ArH), 7.26 (s, 1H, -CH), 6.95-6.86 (m, 1H, ArH), 6.41 (brs, 2H, NH₂).

Thiophene-2-carboxamide (Chart 2, Entry 6)

The reaction of thiophene-2-carbonitrile (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 98 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.15 (brs, 2H, NH₂), 7.86-7.53 (m, 3H, ArH), 7.52 (brs, 2H, NH₂).

2-Chloro-4-(ethoxycarbonyl)-6-methyl-5-nitroso-3-pyridine carboxamide (Chart 2, Entry 7)

The reaction of ethyl 2-chloro-3-cyano-6-methyl-5-nitrosoisonicotinate (1 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O under aerobic conditions. The title compound was recovered as a white solid in 79 % yield. ¹H NMR (DMSO- d_{6} , 400 MHz): δ 7.89 (brs, 1H, NH₂), 7.64 (brs, 1H, NH₂), 4.43-4.383 (m, 2H, CH₂), 2.67 (s, 3H, CH₃), 1.34 (s, 3H, CH₃).

2.4 Characterization data of compounds Chart 3, Entry 1-10

Biphenyl (Chart 3, Entry 1)

$\bigcirc - \bigcirc \\$

The reaction of phenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as a white crystalline solid in 92 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 – 7.56 (m, 4H, ArH), 7.45- 7.40 (m, 4H, ArH), 7.35 – 7.31 (m, 2H, ArH).

4,4'-dichloro-1,1'-biphenyl (Chart 3, Entry 2)

The reaction of 4-chlorophenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as a white crystalline solid in 69 % yield. ¹H NMR (CDCl₃ 400 MHz): δ 7.47 – 7.44 (m, 4H, ArH), 7.41- 7.37 (m, 4H, ArH).

4,4'-difluoro-1,1'-biphenyl (Chart 3, Entry 3)

The reaction of 4-fluorophenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as colorless oil in 79 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.41 – 7.38 (m, 2H, ArH), 7.29- 7.01 (m, 3H, ArH), 6.89-6.87 (m, 3H, ArH).

4,4'-dimethoxy-1,1'-biphenyl (Chart 3, Entry 4)

The reaction of 4-methoxyphenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as a white crystalline solid in 92 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.41 – 7.17 (m, 4H, ArH), 6.89- 6.70 (m, 2H, ArH), 6.69-6.67 (m, 2H, ArH), 3.76 (s, 3H, -OCH₃), 3.68 (s, 3H, -OCH₃).

3,3',4,4'-tetramethoxy-1,1'-biphenyl (Chart 3, Entry 5)

The reaction of 3,4-dimethoxyphenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as colorless oil in 84 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 6.83 – 6.80 (m, 3H, ArH), 6.79- 6.76 (m, 3H, ArH), 3.85 (s, 3H, -OCH₃), 3.81 (s, 6H, -OCH₃), 3.77 (s, 3H, -OCH₃).

4,4'-dimethyl-1,1'-biphenyl (Chart 3, Entry 6)

$$\rightarrow$$

The reaction of 4-methylphenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as a white crystalline solid in 79 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.40– 7.28 (m, 3H, ArH), 7.19- 7.06 (m, 5H, ArH), 2.30 (s, 3H, -CH₃), 2.18 (s, 3H, -CH₃).

4,4'-diethyl-1,1'-biphenyl (Chart 3, Entry 7)

The reaction of 4-ethylphenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as colorless oil in 82 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.42– 7.40 (m, 2H, ArH), 7.30- 7.28 (m, 3H, ArH), 7.17-7.05 (m, 3H, ArH), 2.26-2.56 (q, 2H, -CH₂), 2.50-2.44 (q, 2H, -CH₂), 1.20 (s, 3H, -CH₃), 1.18 (s, 3H, -CH₃).

4,4'-dibromo-1,1'-biphenyl (Chart 3, Entry 8)

The reaction of 4-bromophenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as colorless oil in 61 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.53 – 7.39 (m, 5H, ArH), 7.32- 7.27 (m, 3H, ArH).

4,4'-bis(trifluoromethyl)-1,1'-biphenyl (Chart 3, Entry 9)

The reaction of 4-(trifluoromethyl)phenylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as a white crystalline solid in 84 % yield. ¹H NMR (CDCl₃ 400 MHz): δ 7.34 – 7.26 (m, 4H, ArH), 7.17- 7.15 (m, 2H, ArH), 7.09-7.00 (m, 2H, ArH).

3,3'-bithiophene (Chart 3, Entry 10)

The reaction of 3-thienylboronic acid (1 mmol) with tri-potassium phosphate (0.425 g, 2 mmol) and Cu(OAc)₂ (0.300 g, 1.5 mmol) and catalyst **2** (0.029 g, 4 mol %) in 5mL of H₂O in presence of air. The title compound was recovered as a white crystalline solid in 69 % yield. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.37 (m, 2H, ArH), 7.36- 7.26 (m, 2H, ArH).

2.6 Representative ¹H NMR spectra for amide products

Figure S5:1H NMR spectrum of 4-methoxybenzamide

Figure S6:¹H NMR spectrum of 4-chlorobenzamide

Figure S7:¹H NMR spectrum of 4-methylbenzamide

Figure S8:1H NMR spectrum of 4-hydroxybenzamide

с ж

Figure S9:¹H NMR spectrum of isonicotinamide

Figure S10:¹H NMR spectrum of furan-2-carboxamide

Figure S11:¹H NMR spectrum of thiophene-2-carboxamide

Figure S12:¹H NMR spectrum of quinoline-3-carboxamide

Figure S13:¹H NMR spectrum of 2-chloro-4-(ethoxycarbonyl)-6-methyl-5-nitroso-3-pyridine carboxamide

2.7 Representative ¹H NMR spectra for homocoupled prodcuts

Figure S14:¹H NMR spectrum of Biphenyl

7.476 7.464 7.464 7.453 7.448 7.448 7.408 7.402 7.402 7.385 7.385 7.385

74

Figure S15:¹H NMR spectrum of 4,4'-dichloro-1,1'-biphenyl

Figure S16:¹H NMR spectrum of 4,4'-difluoro-1,1'-biphenyl

Figure S17:¹H NMR spectrum of 4,4'-dimethoxy-1,1'-biphenyl

Figure S18:¹H NMR spectrum of 3,3',4,4'-tetramethoxy-1,1'-biphenyl

Figure S19:¹H NMR spectrum of 4,4'-dimethyl-1,1'-biphenyl

Figure S20:¹H NMR spectrum of 4,4'-diethyl-1,1'-biphenyl

Figure S21:¹H NMR spectrum of 4,4'-dibromo-1,1'-biphenyl

Figure S22:¹H NMR spectrum of 4,4'-bis(trifluoromethyl)-1,1'-biphenyl

Figure S23:¹H NMR spectrum of 3,3'-bithiophene