Supporting information

Designed fabrication of three-dimensional δ-MnO₂-cladded CuCo₂O₄ composites as an outstanding supercapacitor electrode material

Mingjun Pang ^{a b}, Shang Jiang ^{a c *}, Jianguo Zhao ^{a *}, Sufang Zhang ^a, Rui Liu ^a,

Wenshan Qu^a, Qiliang Pan^a, Baoyan Xing^a, Ling Gu^a, Haiqing Wang^a

 ^a Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China.

^b Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun, 130012, China.

^c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P.R. China.

* Corresponding author.

E-mail: 15835210812@163.com (S. Jiang), pangmj0861@163.com (J. G. Zhao)

Supplementary method S1: As shown in Fig. 5b and S1, Trasatti method analysis was used to analyze the capacitance configuration of δ - MnO₂-cladded CuCo₂O₄. According to the theory of Dunn et al.^[1], the total current of the electrode at a fixed potential comprises two separate mechanisms, described by the equation of $i(V) = K_1v^{1/2} + K_2v$ and $i(V)/v^{1/2} = K_1 + K_2v^{1/2}$ (Eq. 1), based on the power law relationship of $i = av^{1/2}$ for Faradaic process arising from redox reactions, and i = av for the capacitive-controlled processes. The current values at a fixed potential can be determined by the cyclic voltammograms at various scan rates of 5-20 mV s⁻¹. By drawing plots of i (V) /v^{1/2} vs. v^{1/2}, the values of K₁ (intercept) and K₂ (slop) at a fixed voltage can be calculated. From this procedure, the series K₁ and K₂ values at different voltages can be quantified, thus the diffusion-controlled current (K₁v^{1/2}) and capacitive-controlled current (K₂v) be determined, respectively.

Fig. S1 SEM image of the CCO@MO electrode after 5000 cycles charge/discharge at 15 Ag^{-1} .

[1] J. Wang, J. Polleux, J. Lim, and B. Dunn, J. Phys. Chem. C 111 (2007) 14925-14931.