Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Immobilization of enzyme on an organic-inorganic hybrid network consisting of Dawson-type polyoxotungstate and zinc(II)-biimidazole complex Moiety

Hao-Tian Zhu^a, Jing Du^a, Ying Lu^b, Fang Su^b, and Yangguang Li^{*a}

Contents

1. Crystal structure figures	.Page 2-3
2. Selected bond lengths and angles of compounds 1 and 2	Page 4-8
3. Physical characterizations	Page 9
4. Enzyme immobilization and characterization	Page 10-13

1. Crystal structure figures

Fig. S1 ORTEP view of the asymmetric unit of compound **1** with atom labeling (30 % probability displacement ellipsoids; Hydrogen atoms and water molecules have been omitted for clarity)

Fig. S2 Connection mode between Dawson-type POM and six $Zn-H_2$ biim coordination units in compound 1

Fig. S3 Crystal structure of compound **2**. **(a)** ORTEP view of the asymmetric unit of compound **2** with atom labeling (30 % probability displacement ellipsoids); **(b)** Polyhedral and ball-and-stick representation of the basic building units in compound **2**; **(c)** The 3-D structure of compound **2** (free H₂O molecules, and hydrogen atoms are omitted for clarity)

2. Selected bond lengths and angles of compounds 1 and 2

Table S1 Selected bond lengths (Å) and angles (°) for compound ${\bf 1}$

Bond	Length(Å)	Bond	Length(Å)	Bond	Length(Å)
W1-059	1.724(9)	W8-026	1.912(11)	W16-O56	1.723(10)
W1-O29	1.882(10)	W8-016	1.916(9)	W16-O60	1.890(11)
W1-023	1.909(10)	W8-053	2.370(9)	W16-O13	1.927(9)
W1-02	1.921(9)	W9-O49	1.707(10)	W16-O10	1.927(9)
W1-O60	1.925(11)	W9-023	1.889(10)	W16-O58	1.950(10)
W1-08	2.346(9)	W9-O20	1.913(9)	W16-O36	2.392(9)
W2-O46	1.692(10)	W9-O9	1.914(10)	W17-O44	1.698(12)
W2-O43	1.892(9)	W9-062	1.915(9)	W17-O21	1.908(8)
W2-O40	1.894(10)	W9-011	2.383(9)	W17-O27	1.913(10)
W2-O32	1.915(9)	W10-05	1.711(9)	W17-O1	1.913(10)
W2-O47	1.965(11)	W10-O24	1.878(10)	W17-O45	1.913(10)
W2-012	2.396(9)	W10-O31	1.886(11)	W17-O28	2.398(10)
W3-O42	1.702(10)	W10-O4	1.899(9)	W18-O22	1.735(10)
W3-O26	1.891(11)	W10-O50	1.937(10)	W18-054	1.891(10)
W3-052	1.899(10)	W10-055	2.356(9)	W18-O34	1.897(10)
W3-O43	1.908(10)	W11-O39	1.701(10)	W18-O19	1.917(10)
W3-054	1.962(10)	W11-07	1.896(10)	W18-O10	1.919(10)
W3-012	2.387(9)	W11-062	1.896(9)	W18-O36	2.367(9)
W4-O38	1.732(9)	W11-O6	1.920(9)	P1-055	1.525(10)
W4-052	1.881(9)	W11-O21	1.923(9)	P1-011	1.528(9)
W4-02	1.887(9)	W11-011	2.365(9)	P1-053	1.547(10)
W4-07	1.901(10)	W12-O35	1.718(12)	P1-O28	1.592(10)
W4-O34	1.930(10)	W12-O58	1.896(9)	P2-012	1.505(9)
W4-08	2.366(9)	W12-O15	1.904(9)	P2-051	1.519(10)
W5-057	1.721(9)	W12-O19	1.922(10)	P2-08	1.534(10)
W5-O47	1.834(10)	W12-O40	1.947(10)	P2-O36	1.580(10)
W5-O4	1.896(10)	W12-O36	2.398(10)	Zn1-057#1	2.182(9)
W5-O16	1.896(9)	W13-O37	1.689(9)	Zn1-059	2.314(9)
W5-O41	1.965(11)	W13-O32	1.866(9)	Zn1-N1	2.095(14)
W5-O53	2.336(9)	W13-O31	1.912(11)	Zn1-N2	2.125(13)
W6-O61	1.710(9)	W13-O15	1.917(9)	Zn1-N3	2.067(14)
W6-O9	1.878(9)	W13-O14	1.941(10)	Zn1-N4	2.159(15)
W6-O33	1.892(11)	W13-O51	2.402(9)	Zn2-O38#2	2.209(10)
W6-O24	1.920(10)	W14-O48	1.686(10)	Zn2-05	2.323(9)
W6-018	1.943(10)	W14-O18	1.885(10)	Zn2-N9	2.096(16)
W6-O55	2.408(9)	W14-025	1.898(9)	Zn2-N10	2.116(13)
W7-03	1.710(9)	W14-O20	1.950(9)	Zn2-N11	2.101(15)
W7-033	1.904(10)	W14-01	1.972(10)	Zn2-N12	2.125(13)

W7-014	1.907(10)	W14-028	2.375(9)	Zn3-O30	2.267(10)
W7-013	1.913(9)	W15-017	1.733(9)	Zn3-061	2.566(10)
W7-029	1.926(10)	W15-O41	1.873(10)	Zn3-N17	2.117(13)
W7-051	2.351(9)	W15-O50	1.889(10)	Zn3-N18	2.025(14)
W8-O30	1.726(9)	W15-O45	1.936(11)	Zn3-N19	2.162(14)
W8-06	1.878(9)	W15-O25	1.948(10)	Zn3-N20	2.073(13)
W8-027	1.910(10)	W15-O28	2.368(8)		
Bond	Angle(°)	Bond	Angle(°)	Bond	Angle(°)
O59-W1-O29	104.5(4)	O27-W8-O26	162.9(4)	O56-W16-O60	102.0(5)
059-W1-023	98.7(4)	O6-W8-O16	156.9(4)	O56-W16-O13	101.9(4)
029-W1-02	156.7(4)	O49-W9-O23	98.8(4)	013-W16-O10	156.3(4)
O23-W1-O60	164.6(4)	O23-W9-O20	163.3(4)	O60-W16-O58	156.6(4)
O46-W2-O43	101.0(5)	O49-W9-O9	102.9(4)	044-W17-O21	103.7(5)
O46-W2-O40	99.5(5)	O9-W9-O62	157.5(4)	021-W17-027	85.1(4)
O43-W2-O32	156.3(4)	05-W10-O24	99.5(4)	027-W17-01	156.4(4)
040-W2-047	161.5(4)	05-W10-O31	98.4(5)	O44-W17-O28	170.7(4)
O42-W3-O26	98.4(5)	O24-W10-O4	156.8(4)	O22-W18-O54	103.1(4)
O42-W3-O52	103.1(5)	O31-W10-O50	164.5(4)	O22-W18-O34	103.9(5)
052-W3-043	156.5(4)	039-W11-07	100.3(4)	O34-W18-O19	156.8(4)
O26-W3-O54	165.5(4)	O39-W11-O62	99.2(4)	054-W18-010	158.7(4)
O38-W4-O52	103.6(4)	062-W11-06	157.4(4)	N3-Zn1-N1	177.0(5)
O38-W4-O2	100.0(4)	07-W11-O21	163.1(4)	N3-Zn1-N2	103.3(5)
O38-W4-O7	99.6(5)	O35-W12-O58	99.8(5)	N3-Zn1-O57#1	89.9(4)
07-W4-034	164.9(4)	058-W12-015	90.5(4)	057#1-Zn1-059	171.1(3)
057-W5-047	98.3 (4)	015-W12-019	154.4(4)	N9-Zn2-N11	179.2(5)
057-W5-04	103.6(4)	O35-W12-O36	171.6(4)	N9-Zn2-N10	80.0(5)
057-W5-016	97.6(4)	037-W13-032	103.0(4)	N9-Zn2-O38#2	88.7(5)
047-W5-041	163.7(4)	037-W13-031	100.4(4)	O38#2-Zn2-O5	177.4(4)
O61-W6-O9	103.8(4)	031-W13-015	161.8(4)	N18-Zn3-N20	166.4(5)
O61-W6-O33	100.0(5)	032-W13-014	157.3(4)	N18-Zn3-N17	81.9(5)
O9-W6-O24	154.8(4)	O48-W14-O18	104.6(5)	N18-Zn3-O30	96.0(4)
O33-W6-O18	162.9(4)	018-W14-025	91.8(4)	O30-Zn3-O61	178.3(4)
O3-W7-O33	98.6(4)	O25-W14-O20	156.1(4)	O55-P1-O11	112.8(5)
O3-W7-O14	97.1(4)	O48-W14-O28	168.7(4)	O11-P1-O53	110.9(5)
033-W7-013	164.1(4)	017-W15-O41	103.2(5)	O55-P1-O28	106.3(5)
O3-W7-O51	171.5(4)	017-W15-O50	105.5(5)	O12-P2-O51	111.1(5)
O30-W8-O6	103.5(4)	O50-W15-O45	156.8(4)	O12-P2-O36	106.6(5)
O30-W8-O27	98.4(4)	017-W15-025	157.1(4)	O8-P2-O36	106.8(5)

Symmetry transformations used to generate equivalent atoms: #1 x-1, y-1, z; #2 x, y+1, z

d(D...A) <(DHA) D-H...A d(D-H) d(H...A) 0.86 2.27 3.08(2) 155.3 N5-H5A...O3W N5-H5A...O44#4 0.86 2.44 2.940(19) 117.2 N6-H6A...O3W 0.86 2.16 2.97(2) 155.8 N7-H7A...O22#5 0.86 2.33 3.10(2) 149.3 N7-H7A...O4W#5 0.86 3.20(2) 123.3 2.65 N8-H8A...O22#5 0.86 2.25 2.06(2) 156.0 N8-H8A...O10#5 0.86 3.19(2) 129.2 2.57 N13-H13A...01#6 0.86 2.790(19) 2.00 152.3 N13-H13A...O48#6 0.86 2.61 3.21(2) 128.1 N14-H14A...O1W 0.86 2.15 2.91(2) 147.5 N15-H15A...O5W 0.86 1.96 2.81(2) 168.5 N16-H16A...O56#7 0.86 2.16 2.909(19) 145.2 N21-H21A...O2W 0.86 2.95(2) 170.0 2.10 N22-H22A...O35#8 2.871(19) 0.86 2.23 131.2 N23-H23A...O17#9 0.86 2.33 3.088(19) 147.5 N23-H23A...O45#9 0.86 2.38 3.021(16) 131.4 N24-H24A...017#9 0.86 1.96 2.791(16) 161.0

Table S2 Hydrogen bonds for compound 1

Symmetry transformations used to generate equivalent atoms: #4 -x+1, -y, -z; #5 -x+1, -y, -z+1; #6 -x+1, -y+1, -z; #7 -x+1, -y+1, -z+1; #8 -x+2, -y+1, -z+1; #9 -x+2, -y+1, -z

Table S3 Selected bond lengths (Å) and angles (°) for compound 2

Bond	Length(Å)	Bond	Length(Å)	Bond	Length(Å)
W1-043	1.715(11)	W7-062	1.887(11)	W14-O25	1.692(12)
W1-051	1.911(12)	W7-028	1.936(12)	W14-O54	1.880(11)
W1-06	1.921(12)	W7-044	2.351(11)	W14-O26	1.912(10)
W1-058	1.925(11)	W8-029	1.692(12)	W14-059	1.918(10)
W1-022	1.932(12)	W8-042	1.901(11)	W14-023	1.936(12)
W1-04	2.375(11)	W8-011	1.907(12)	W14-O10	2.390(11)
W2-07	1.708(12)	W8-03	1.911(12)	W15-O34	1.714(12)
W2-O41	1.873(13)	W8-054	1.938(11)	W15-O50	1.865(11)
W2-019	1.906(11)	W8-08	2.358(11)	W15-O24	1.895(12)
W2-062	1.908(11)	W9-027	1.693(11)	W15-O26	1.909(10)
W2-02	1.940(11)	W9-021	1.880(12)	W15-O49	1.937(12)
W2-O48	2.352(11)	W9-O20	1.911(11)	W15-O10	2.399(10)
W3-O38	1.710(12)	W9-024	1.921(12)	W16-O39	1.721(11)
W3-059	1.887(11)	W9-O60	1.924(11)	W16-O36	1.862(11)
W3-O42	1.902(12)	W9-O61	2.376(10)	W16-O20	1.876(11)
W3-O31	1.908(11)	W10-O45	1.709(11)	W16-051	1.922(11)
W3-O41	1.926(12)	W10-O28	1.883(11)	W16-O30	1.954(11)

O5-W5-O36	87.5(5)	O58-W12-O18	87.1(5)	O55-W18-O10	168.0(5)
O35-W5-O44	173.5(5)	01-W12-018	163.8(50	O23-W18-O10	73.3(4)
O32-W6-O22	88.2(5)	O56-W12-O48	173.8(5)	O4-P1-O48	112.0(6)
O32-W6-O1	156.9(4)	019-W12-O48	72.7(4)	O48-P1-O44	112.2(6)
O12-W6-O9	171.9(5)	O5-W13-O50	162.3(4)	O4-P1-O9	106.7(6)
O37-W6-O9	72.5(4)	O21-W13-O50	83.2(5)	O53-P2-O8	112.3(6)
O3-W7-O62	88.9(5)	015-W13-08	173.4(5)	O53-P2-O61	111.5(6)
O3-W7-O28	164.1(5)	011-W13-08	72.9(4)	08-P2-010	106.1(6)

Table S4 Hydrogen bonds for compound 2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N1-H1A045#1	0.86	1.99	2.82(2)	161.7
N2-H2AO39#2	0.86	2.17	2.918(19)	145.9
N2-H2AO27	0.86	2.39	2.903(19)	118.7
N3-H3BO8W	0.86	2.45	3.14(3)	137.9
N4-H4BO39#2	0.86	2.24	2.94(2)	138.2
N4-H4B015	0.86	2.48	3.00()2	119.8
N6-H6BO1W#2	0.86	2.10	2.92(2)	158.0
N6-H6BO29#2	0.86	2.56	3.06(2)	117.9
N8-H8AO1W#2	0.86	2.02	2.84(2)	160.9
N9-H9BO3W	0.86	1.94	2.79(2)	172.8
N10-H10BO49	0.86	1.88	2.732(19)	168.8
N11-H11BO3W	0.86	2.24	3.06(3)	159.6
N12-H12BO23	0.86	2.02	2.82(2)	154.3
N13-H13AO5W	0.86	2.20	3.00(3)	154.0
N13-H13AO55#3	0.86	2.38	2.90(2)	119.0
N14-H14A01W	0.86	1.86	2.71(2)	168.7
N15-H15BO5W	0.86	1.85	2.70(3)	168.4
N16-H16BO1W	0.86	2.21	3.01(3)	154.9
N16-H16BO56#4	0.86	2.56	3.06(3)	118.4
N17-H17BO7W	0.86	2.16	2.94(3)	150.1
N18-H18BO2W	0.86	1.94	2.777(19)	164.0
N19-H19AO7W	0.86	2.11	2.87(3)	147.8
N19-H19AO7W#5	0.86	2.55	3.04(3)	116.9
N20-H20AO2W	0.86	2.05	2.87(3)	159.2
N21-H21BO4W	0.86	2.22	3.01(3)	151.1
N21-H22BO13	0.86	2.32	2.84(2)	119.5
N23-H23BO4W	0.86	1.91	2.75(3)	166.1

Symmetry transformations used to generate equivalent atoms: #1 x+1, y-1, z; #2 -x+1, -y, -z+1; #3 x, y+1, z; #4 x+1, y, z; #5 -x-1, -y+1, -z+1

3. Physical characterizations

Fig. S5 The simulated and experimental XRD patterns of compound 1

Fig. S6 TG curve of compound 1

4. Enzyme immobilization

Fig. S7 The UV-vis absorption spectrum of co-oxidation reaction solution of 4-AAP and phenol catalyzed by

enzyme

Fig. S8 The standard curve of HRP

Fig. S9 CD spectra of free HRP and desorbed HRP from HRP/1

Fig. S10 The TGA and DSC curves of (a) HRP; (b) compound 1; (c) HRP/1 in nitrogen atmosphere.

Fig. S11 The reusability of immobilized enzyme HRP/1 (HRP loading of 90.1 mg g⁻¹) as a catalyst for co-oxidation of phenol and 4-AAP at pH 6

Fig. S12 The linear calibration plot for H_2O_2 detection by the reuse of HRP/**1** after six recycles as catalyst. $\Delta A = A$ (the immobilized HRP, 510 nm) – A (blank, 510 nm). Reaction time is 5 min (Inset: Kinetics curve)