Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

A library of multisubstituted cyclotriphosphazenes - molecular scaffolds for hybrid materials

Electronic Supplementary Information for:

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Rafał Januszewski^[a], Michał Dutkiewicz*^[b, c], Bartosz Orwat^[a], Hieronim Maciejewski^[a, c], Bogdan Marciniec^[a, b]

Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland

[a] Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Umultowska 89c, 61-614 Poznań, Poland [b]

[c] Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań, Poland

E-mail: midu@amu.edu.pl

Methods and materials	2
General procedure for cyclotriphosphazene (1) functionalization	2
General procedure for cyclotriphosphazene (2) functionalization	2
Spectra of 2,2-bis(4-dimethylsilylphenoxy)-4,4,6,6-bis[spiro(2',2"-dioxy-1'-1"- biphenyl)]cyclotriphosphazene (1)	
Spectra of Product (1a)	5
Spectra of Product (1b)	7
Spectra of Product (1c)	9
Spectra of Product (1d)	
Spectra of Product (1e)	
Spectra of Product (1f)	
Spectra of Hexakis((4-dimethylsilyl)phenoxy)cyclotriphosphazene (2)	
Spectra of Product (2a)	20
Spectra of Product (2b)	23
Spectra of Product (2c)	
Spectra of Product (2d)	
Spectra of Product (2e)	
Spectra of Product (2f)	
Spectra of Product (2g)	
Spectra of Product (2h)	
Spectra of Product (2i)	43
Spectra of Product (2j)	

Methods and materials

All commercially available chemicals were used without further purification. Allyl glycidyl ether, 1-octene, N,N-dimethylallylamine, (±)-3,7-dimethyl-1,6-octadien-3-ol, 2-chloroethyl vinyl ether, hept-1-yne, ethynyltrimethylsilane, ethynyldimethyl(phenyl)silane and Karstedt's complex were obtained from Sigma-Aldrich while vinyltriethoxysilane and ethynyltriisopropylsilane were purchased from ABCR. 5-allyl-1,1,2,2,3,3,4,4-octafluoropentyl ether was synthesized according to the published procedure^[1]. The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Ultrashield 300 MHz spectrometer using CDCl₃ as a solvent. The ²⁹Si and ³¹P NMR spectra were recorded using Bruker Ascend 400 spectrometer using CDCl₃ as a solvent. FT-IR spectra were recorded on a Nicolet iS50 (Thermo Scientific) Fourier transform spectrophotometer equipped with a diamond ATR unit. In all cases, 16 scans at a resolution of 2 cm⁻¹ were collected, to record the spectra in a range of 4000-650 cm⁻¹. Elemental analyses were carried out using a Vario EL III instrument (Elementar Analysensysteme GmbH).

General procedure for cyclotriphosphazene (1) functionalization

A mixture prepared from 0.5 g (0.62 mmol) of (1), 10mL of toluene and 1.24 mmol of alkene (**b**-f) (1.37 mmol in case of olefin (**a**)) was heated up to 90°C, then Karstedt's catalyst was added [SiH]:[C=C]:[Pt] = [1]:[1]:[5×10⁻⁵] for all alkenes except N,N-dimethylallylamine and allyl-glycidyl ether. For allyl-glycidyl ether the stoichiometry of substrates was [SiH]:[C=C]:[Pt] = [1]:[1.1]:[5×10⁻⁵] and for N,N-dimethylallylamine [SiH]:[C=C]:[Pt] = [1]:[1.25×10⁻⁴]. Reactions were continued until total disappearance of the band at 2116 cm⁻¹ characteristic for Si-H bond present in the substrate (1) structure observed in the FT-IR spectrum of the reaction mixture. After the reaction completion, the mixture was cooled down to the room temperature and filtered through silica gel for the catalyst separation. Evaporation of the solvent gave pure products as white solids.

General procedure for cyclotriphosphazene (2) functionalization

A mixture prepared from 0.5 g (0.48 mmol) of (**2**), 10mL of toluene and 2.875 mmol of alkene/alkyne (**b**-**j**) (3.165 mmol in case of allyl-glycidyl ether (**a**)) was heated up to 90°C, then Karstedt's catalyst was added [SiH]:[C=C]:[Pt] = [1]:[1]:[5x10⁻⁵] for all alkynes and alkenes except N,N-dimethylallylamine and allyl-glycidyl ether. For allyl-glycidyl ether the stoichiometry of substrates was [SiH]:[C=C]:[Pt] = [1]:[1.1]:[5x10⁻⁵] and for N,N-dimethylallylamine [SiH]:[C=C]:[Pt] = [1]:[1.25x10⁻⁴]. Reactions were continued until total disappearance of the band at 2116 cm⁻¹, characteristic for Si-H bond present in the substrate (**2**) structure observed in the FT-IR spectrum of the reaction mixture. After the reaction completion, the mixture was cooled down to the room temperature and filtered through silica gel for the catalyst separation. Evaporation of the solvent gave pure products as colorless or pale yellow oils.

Literature:

[1] R. Januszewski, I. Kownacki, H. Maciejewski, B. Marciniec, J. Organomet. Chem. 2017, 846, 263.

Spectra of: 2,2-bis(4-dimethylsilylphenoxy)-4,4,6,6-bis[spiro(2',2''-dioxy-1'-1''-biphenyl)]cyclotriphosphazene (1)

Elemental Analysis Calc. for C₄₀H₃₈N₃O₆P₃Si₂: C, 59.62; H, 4.75; N, 5.21; O, 11.91; P, 11.53; Si, 6.97%; Found: C, 59.65; H, 4.74; N, 5.23%.

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 2. ¹³C NMR spectrum of Substrate (1).

Fig. 4. ³¹P NMR spectrum of Substrate (1).

Spectra of Product (1a): Yield 94%. ¹**H NMR** (CDCl₃): δ = 7.56 (d, 4H, *J*=10.6 Hz), 7.50 (dd, 4H, *J*=9.9, 2.4Hz), 7.41-7.30 (m, 12H), 6.99 (d, 4H *J*=10.2Hz), 3.65 (dd, 2H, *J*=15.3, 4.1Hz), 3.49-3.39 -CH-<u>CH₂(O)_{oxirane}</u> (m, 4H), 3.32 C<u>H_{oxirane}(O) (m, 2H), 3.10 (m, 2H), 2.75 (m, 2H), 2.56 (m, 2H), 1.63 -<u>CH₂CH₂CH₂Si (m, 4H), 0.78</u> CH₂C<u>H₂Si (m, 4H), 0.30 SiCH₃ (s, 12H), ¹³C NMR (CDCl₃): δ = 151.78, 148.20, 135.87, 135.10, 129.76, 129.67, 128.87, 126.14, 121.98, 120.67, 74.30, 71.53, 50.97, 44.43, 24.19 -<u>CH₂CH₂Si, 11.89 CH₂CH₂Si, -2.84 SiCH₃, ²⁹Si NMR (CDCl₃): δ = -2.40, ³¹P NMR (CDCl₃): δ = 25.48, 9.46. **Elemental Analysis** Calc. for C₅₂H₅₈N₃O₁₀P₃Si₂: C, 60.39; H, 5.65; N, 4.06; O, 15.47; P, 8.99; Si, 5.43%; Found: C, 60.24; H, 5.67; N, 4.05%.</u></u></u>

10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 f1(ppm)

Fig. 5. ¹H NMR spectrum of Product (**1a**).

^{250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60} f1 (ppm)

Fig. 6. ¹³C NMR spectrum of Product (**1a**).

Fig. 8. ³¹P NMR spectrum of Product (**1a**).

Spectra of Product (1b): Yield 91%.¹H NMR (CDCl₃): δ = 7.57 (d, 4H, *J*=11.1 Hz), 7.50 (dd, 4H), 7.41-7.30 (m, 12H, 9.8, 2.1 Hz), 7.0 (d, 4H, *J*=10.3 Hz) 3.56 <u>CH₂OCH₂CH₂Cl</u> (m, 12H), 1.22 -CH₂Si (m, 4H), 0.33 SiCH₃ (s, 12H) ¹³**C NMR** (CDCl₃): δ = 151.87, 148.20, 135.74, 135.09, 129.77, 129.71, 128.88, 126.17, 121.96, 120.81, 70.43 CH₂O<u>CH₂CH₂Cl</u>, 68.34 <u>CH₂OCH₂CH₂Cl</u>, 43.05 CH₂Cl, 17.58 -CH₂Si, -2.38 SiCH₃, ²⁹Si NMR (CDCl₃): δ = -4.18, ³¹P NMR (CDCl₃): δ = 25.47, 9.48. **Elemental Analysis** Calc. for C₄₈H₅₂Cl₂N₃O₈P₃Si₂: C, 56.58; H, 5.14; Cl, 6.96; N, 4.12; O, 12.56; P, 9.12; Si, 5.51%; Found: C, 56.77; H, 5.14; N, 4.12%.

11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.5 f1(ppm)

Fig. 9. ¹H NMR spectrum of Product (**1b**).

Fig. 10. ¹³C NMR spectrum of Product (**1b**).

New Journal of Chemistry

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Spectra of Product (1c): Yield 94%. ¹**H NMR** (CDCl₃): δ = 7.55 (d, 4H, *J*= 10.8 Hz), 7.50 (dd, 4H, *J*=9.8, 2.3 Hz), 7.40-7.32 (m.12H), 6.98 (d, 4H, *J*=10.0 Hz), 1.30-1.23 (24H), 0.87 (m, 6H), 0.76 (m, 4H) CH₂Si, 0.28 SICH₃ (s, 12H), ¹³**C NMR (CDCl₃):** δ = 151.68, 148.24, 136.44, 135.08, 129.74, 129.66, 128.90, 126.11, 122.02, 120.70, 33.78, 32.05, 29.40, 24.01, 22.78, 15.94, 14.25 CH₂Si, -2.70 SiCH₃, ²⁹Si NMR (CDCl₃): δ = -2.95, ³¹**P NMR** (CDCl₃): δ = 25.51, 9.56. **Elemental Analysis** Calc. for C₅₆H₇₀N₃O₆P₃Si₂: C, 65.28; H, 6.85; N, 4.08; O, 9.32; P, 9.02; Si, 5.45%; Found: C, 65.22; H, 6.87; N, 4.10%.

Fig. 13. ¹H NMR spectrum of Product (1c).

Fig. 14. ¹³C NMR spectrum of Product (**1c**).

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Spectra of Product (1d): Yield 98%. ¹**H NMR** (CDCl₃): δ = 7.55 (d, 4H, *J*=11.0 Hz), 7.50 (dd, 4H, *J*=9.9, 2.4 Hz)), 7.40-7.30 (m.12H), 6.99 (d, 4H, *J*=10.1 Hz), 6.04 CF₂H(tt, 2H, *J*=69.3, 7.3 Hz), 3.86 CH₂O (t, 4H, *J*=18.7 Hz), 3.51 OCH₂- (t, 4H, *J*=8.9 Hz), 1.62 <u>CH₂</u>CH₂Si (m, 4H), 0.77 CH₂Si (m, 4H), 0.30 SiCH₃ (s, 12H), ¹³C NMR (CDCl₃): δ = 151.95, 148.21, 135.61, 135.08,129.74, 129.70, 128.89, 126.16, 121.96, 120.78, 75.82, 67.72, 24.05 <u>CH₂CH₂Si</u>, 11.65 CH₂Si, -2.90 SiCH₃, ²⁹Si NMR (CDCl₃): δ = -2.40, ³¹P NMR (CDCl₃): δ = 25.37, 9.41. **Elemental Analysis** Calc. for C₅₆H₅₄F₁₆N₃O₈P₃Si₂: C, 49.82; H, 4.03; F, 22.51; N, 3.11; O, 9.48; P, 6.88; Si, 4.16%; Found: C, 49.72; H, 4.04; N, 3.11%.

12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.5 f1(pom)

Fig. 17. ¹H NMR spectrum of Product (1d).

Fig. 18. ¹³C NMR spectrum of Product (**1d**).

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 19. ²⁹Si NMR spectrum of Product (1d).

Spectra of Product (1e) Yield 98%. ¹**H NMR** (CDCl₃): δ = 7.55 (d, 4H, *J*=8.1 Hz), 7.50 (dd, 4H, *J*=7.4, 1.7Hz), 7.40-7.32 (m, 12H), 7.0 (d, 4H), 5.10 -C=<u>CH</u>-CH₂ (m, 2H), 1.98 -C=CH-<u>CH₂</u> (m, 4H), 1.66 (s, 6H), 1.58 (s, 6H), 1.45 (m, 8H), 1.13 (s, 6H), 0.76 (m, 4H) CH₂Si, 0.30 SiCH₃ (s, 12H), ¹³C NMR (CDCl₃): δ = 151.81, 148.21, 135.78, 135.09, 131.80, 129.76, 129.68, 128.88, 126.14, 124.61, 121.98, 120.78, 73.44, 40.82, 35.90, 26.39, 25.83, 22.75, 17.76, 9.50 CH₂Si, -2.92 SiCH₃, ²⁹Si NMR (CDCl₃): δ = -1.85, ³¹P NMR (CDCl₃): δ = 25.48, 9.44. **Elemental Analysis** Calc. for C₆₀H₇₄N₃O₈P₃Si₂: C, 64.67; H, 6.69; N, 3.77; O, 11.49; P, 8.34; Si, 5.04%; Found: C, 64.50; H, 6.69; N, 3.76%.

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 f1(ppm)

Fig. 22. ¹³C NMR spectrum of Product (**1e**).

New Journal of Chemistry

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 24. ³¹P NMR spectrum of Product (1e).

Spectra of Product (1f) Yield 93%. ¹H NMR (CDCl₃): δ = 7.55 (d, 4H), 7.50 (dd, 4H), 7.38-7.29 (m, 12H), 6.99 (d, 4H), 2.23 N-CH₂ (m 4H), 2.16 NMe₂ (s, 12H), 1.47 <u>CH₂CH₂Si (m, 4H), 0.75 CH₂CH₂Si (m, 4H), 0.29 SiCH₃ (s, 12H), ¹³C NMR (CDCl₃): δ = 151.96, 148.23, 136.04, 135.08, 129.76, 129.67, 128.89, 126.14, 122.00, 120.72, 63.20 N-CH₂, 45.51 NMe₂, 22.10 <u>CH₂CH₂Si</u>, 13.44 CH₂<u>CH₂Si</u>, -2.79 SiCH₃, ²⁹Si NMR (CDCl₃): δ = -2.61, ³¹P NMR (CDCl₃): δ = 25.48, 9.42. **Elemental Analysis** Calc. for C₅₀H₆₀N₅O₆P₃Si₂: C, 61.52; H, 6.20; N, 7.17; O, 9.83; P, 9.52; Si, 5.75%; Found: C, 61.41; H, 6.21; N, 7.16%.</u>

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 fl(ppm)

Fig. 25. ¹H NMR spectrum of Product (1f).

Fig. 26. ¹³C NMR spectrum of Product (**1f**).

New Journal of Chemistry

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 28. ³¹P NMR spectrum of Product (1f).

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Spectra of Hexakis((4-dimethylsilyl)phenoxy)cyclotriphosphazene (2)

Elemental Analysis Calc. for $C_{48}H_{66}N_3O_6P_3Si_6$: C, 55.30; H, 6.38; N, 4.03; O, 9.21; P, 8.91; Si, 16.16%; Found: C, 55.13; H, 6.40; N, 4.02%.

Fig. 29. FT-IR spectrum of Substrate (2).

Fig. 30. ¹H NMR spectrum of Substrate (2).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 31. ¹³C NMR spectrum of Substrate (2).

-17.27

Fig. 32. ²⁹Si NMR spectrum of Substrate (2).

Fig. 33. ³¹P NMR spectrum of Substrate (2).

A library of multisubstituted cyclotriphosphazenes - molecular scaffolds for hybrid materials

Spectra of Product (2a): Yield 93%. ¹H NMR (300 MHz, CDCl₃) δ = 7.33 (d, 12H, *J*=8.3 Hz), 6.91 (d, 12H, *J*=8.1 Hz), 3.65 (dd, 6H, *J*=11.5, 3.0 Hz), 3.51 – 3.24 (m, 18H), 3.10 (m, 6H), 2.79 – 2.73 (m, 6H), 2.57 (m, 6H), 1.57 $\underline{CH_2CH_2Si}$ (m, 12H), 0.71 $\underline{CH_2CH_2Si}$ (m, 12H), 0.24 $\underline{SiCH_3}$ (s, 36H). ¹³C NMR (CDCl₃; 75 MHz) δ = 151.57 (C-O), 135.56 (CPh-Si), 134.89, 120.65, 74.30, 71.55, 50.96, 44.42, 24.16 $\underline{CH_2CH_2Si}$, 11.86 $\underline{CH_2CH_2Si}$, -3.86 $\underline{SiCH_3}$. ³¹P NMR (CDCl₃; 162 MHz) δ: = 8.22. ²⁹Si NMR (CDCl₃; 79 MHz) δ = -2.56. **Elemental Analysis** Calc. for C₈₄H₁₂₆N₃O₁₈P₃Si₆: C, 58.41; H, 7.35; N, 2.43; O, 16.67; P, 5.38; Si, 9.76%; Found: C, 58.45; H, 7.34; N, 2.43%.

Fig. 34. FT-IR spectrum of Product (2a).

Fig. 35. ¹H NMR spectrum of Product (2a).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 37. ²⁹Si NMR spectrum of Product (2a).

Fig. 38. ³¹P NMR spectrum of Product (2a).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Spectra of Product (2b): Yield 95%. ¹**H NMR** (300 MHz, CDCl₃) δ = 7.36 (d, *J* = 8.3 Hz, 12H), 6.94 (d, *J* = 8.3 Hz, 12H), 3.56 CICH₂CH₂OCH₂- (m, 18H), 1.17 CH₂Si (t, J = 8.0 Hz, 12H), 0.29 SiCH₃ (s, 36H). ¹³**C NMR** (CDCl₃; 75 MHz) δ = 151.67 C-O, 135.20 C_{Ph}-Si, 134.89, 120.69, 70.43 OCH₂, 68.28 OCH₂, 43.02 CH₂Cl, 17.51 SiCH₂, -2.40 SiCH₃. ³¹**P NMR** (CDCl₃; 162 MHz) δ = 8.20. ²⁹**Si NMR** (CDCl₃; 79 MHz) δ : -4.29. **Elemental Analysis** Calc. for C₇₂H₁₀₈Cl₆N₃O₁₂P₃Si₆: C, 51.42; H, 6.47; Cl, 12.65; N, 2.50; O, 11.42; P, 5.53; Si, 10.02%; Found: C, 51.42; H, 6.45; N, 2.49%.

Fig. 39. FT-IR spectrum of Product (2b).

Fig. 40. ¹H NMR spectrum of Product (**2b**).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 41. ¹³C NMR spectrum of Product (2b).

Fig. 42. ²⁹Si NMR spectrum of Product (**2b**).

Fig. 43. ³¹P NMR spectrum of Product (**2b**).

Spectra of Product (2c): Yield 98%. ¹**H NMR** (300 MHz, CDCl₃) δ = 7.34 (d, *J* = 8.2 Hz, 12H), 6.92 (d, *J* = 8.1 Hz, 12H), 3.77 O<u>CH₂</u>CH₃ (q, *J* = 7.0 Hz, 36H), 1.19 OCH₂<u>CH₃</u> (t, *J* = 7.0 Hz, 54H), 0.74 SiCH₂ (m, 12H), 0.52 SiCH₂ (m, 12H), 0.23 SiCH₃ (s, 36H). ¹³C NMR (CDCl₃; 75 MHz) δ = 151.63 (C-O), 135.51 (CPh-Si), 134.97, 120.98, 58.51 O<u>CH₂</u>CH₃, 18.43 OCH₂<u>CH₃</u>, 6.95 SiCH₂, 2.65 SiCH₂, -3.41 SiCH₃. ³¹P NMR (CDCl₃; 162 MHz) δ = 8.11. ²⁹Si NMR (CDCl₃; 79 MHz) δ = -1.20 (Ph-Si), -45.07 [Si(OEt)₃]. Elemental Analysis Calc. for C₉₆H₁₇₄N₃O₂₄P₃Si₁₂: C, 52.79; H, 8.03; N, 1.92; O, 17.58; P, 4.25; Si, 15.43%; Found: C, 52.80; H, 8.03; N, 1.93%.

Fig. 44. FT-IR spectrum of Product (2c).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 47. ²⁹Si NMR spectrum of Product (2c).

0 -20 -40

-60

-80

100 80 60 40 20

-100 f1 (ppm) -130

-160

-190

-220

-250

-280

Fig. 48. ³¹P NMR spectrum of Product (**2c**).

Spectra of Product (2d): Yield 93%. ¹H NMR (300 MHz, CDCl₃) δ = 7.33 (d, *J* = 8.3 Hz, 12H), 6.92 (d, *J*=8.2 Hz, 12H), 6.03 CF₂H (tt, *J*=52.1, 5.5 Hz, 6H), 3.86 OCH₂ (t, *J* = 14.0 Hz, 12H), 3.49 OCH₂ (t, *J* = 6.7 Hz, 12H), 1.57 <u>CH₂CH₂Si (m, 12H), 0.71 CH₂CH₂Si (m, 12H), 0.24 SiCH₃ (s, 36H). ¹³C NMR (CDCl₃; 75 MHz) δ = 151.62, 135.40, 134.89, 120.72, 75.80 OCH₂, 67.62 OCH₂, 24.02 <u>CH₂CH₂Si</u>, 11.62 CH₂<u>CH₂Si</u>, -2.96 SiCH₃. ³¹P NMR (CDCl₃; 162 MHz) δ = 8.25. ²⁹Si NMR (CDCl₃; 79 MHz) δ = -2.55. Elemental Analysis Calc. for C₉₆H₁₁₄F₄₈N₃O₁₂P₃Si₆: C, 44.40; H, 4.60; F, 33.05; N, 1.52; O, 6.96; P, 3.37; Si, 6.11%; Found: C, 44.55; H, 4.58; N, 1.52%.</u>

Fig. 49. FT-IR spectrum of Product (2d).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 52. ²⁹Si NMR spectrum of Product (2d).

Fig. 53. ³¹P NMR spectrum of Product (**2d**).

Spectra of Product (2e) Yield 97%. ¹H NMR (300 MHz, CDCl₃) δ = 7.35 (d, *J* = 8.3 Hz, 12H), 6.91 (d, *J* = 8.1 Hz, 12H), 5.09 (m, 6H), 1.97 (m, 12H), 1.66 (s, 18H), 1.58 (s, 18H), 1.49 – 1.35 (m, 24H), 1.10 (s, 18H), 0.7 SiCH₂ (m, 12H), 0.24 SiCH₃ (s, 36H). ¹³C NMR (CDCl₃; 75 MHz) δ : 151.62, 135.57, 134.93, 131.78, 124.64, 120.74, 77.39, 40.86, 35.89, 26.36, 25.85, 22.77, 17.79, 9.43 SiCH₂, 2.89 SiCH₃. ³¹P NMR (CDCl₃; 162 MHz) δ = 8.27. ²⁹Si NMR (CDCl₃; 79 MHz) δ = -2.00. Elemental Analysis Calc. for C₁₀₇H₁₇₂N₃O₁₂P₃Si₆: C, 66.72; H, 9.14; N, 2.05; O, 9.36; P, 4.53; Si, 8.21%; Found: C, 66.50; H, 9.13; N, 2.06%.

Fig. 54. FT-IR spectrum of Product (2e).

Fig. 55. ¹H NMR spectrum of Product (2e).

New Journal of Chemistry

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 57. ²⁹Si NMR spectrum of Product (2e).

Fig. 58. ³¹P NMR spectrum of Product (**2e**).

Spectra of Product (2f) Yield 94%. ¹H NMR (300 MHz, CDCl₃) δ = 7.33 (d, *J* = 8.1 Hz, 12H), 6.89 (d, *J* = 8.1 Hz, 12H), 2.26 – 2.05 N-CH₂, NMe₂ (48H), 1.44 <u>CH₂</u>CH₂Si (m, 12H), 0.76 – 0.61 CH₂<u>CH₂Si (m, 12H)</u>, 0.23 SiCH₃ (s, 36H). ¹³C NMR (CDCl₃; 75 MHz) δ: 151.57 C-O, 135.70, 134.87, 120.67, 63.26 N-CH₂, 45.55 NMe₂, 22.12 <u>CH₂</u>CH₂Si, 13.43 CH₂<u>CH₂Si</u>, -2.80 SiCH₃. ³¹P NMR (CDCl₃; 162 MHz) δ = 8.26. ²⁹Si NMR (CDCl₃; 79 MHz) δ = -2.78. **Elemental Analysis** Calc. for C₇₈H₁₃₂N₉O₆P₃Si₆: C, 60.31; H, 8.57; N, 8.12; O, 6.18; P, 5.98; Si, 10.85%; Found: C, 60.02; H, 8.59; N, 8.14%.

Fig. 59. FT-IR spectrum of Product (2f).

Fig. 60. ¹H NMR spectrum of Product (2f).

New Journal of Chemistry A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 62. ²⁹Si NMR spectrum of Product (2f).

Fig. 63. ³¹P NMR spectrum of Product (2f).

A library of multisubstituted cyclotriphosphazenes - molecular scaffolds for hybrid materials

Spectra of Product (2g) Yield 92%. *α*/β-E: (25/75). ¹H NMR (300 MHz, CDCl₃) δ = *Isomer* β-*E*: 7.34 (d, *J*=7.3 Hz, 12H), 6.88 (d, *J*=7.5 Hz, 12H), 6.10 (dt, *J*=18.4 Hz, 6H), 5.71 (d, *J*=18.6 Hz, 6H), 2.10 (m, 12H), 1.39-1.21 (m, 36H), 0.85 (m, 18H), 0.29 (s, 36H), *Isomer* α: (d, *J*=7.3 Hz, 12H), 6.88 (d, *J*=7.5 Hz, 12H), 5.66 (d, *J*=2.70 Hz, 6H), 5.36 (d, *J*=2.66 Hz, 6H), 2.10 (m, 12H), 1.39-1.21 (m, 36H), 0.85 (m, 18H), 0.33 (s, 36H). ¹³C NMR (75 MHz, CDCl₃) δ = *Isomer* β-*E*: 151.61, 149.81 (Si-CH=), 135.31, 135.21, 127.09 (Si-CH=CH-), 120.66, 36.94, 31.61, 28.44, 22.66, 14.19, 2.09 (Si-CH₃), *Isomer* α: 151.61, 150.45 (Si-CH=), 135.73, 135.21, 125.96 (Si-CH=CH), 120.66, 35.99, 31.76, 28.66, 22.66, 14.19, 2.57. **Elemental Analysis** Calc. for C₉₀H₁₃₈N₃O₆P₃Si₆: C, 66.75; H, 8.59; N, 2.59; O, 5.93; P, 5.74; Si, 10.41%; Found: C, 66.74; H, 8.59; N, 2.60%.

Fig. 64. ¹H NMR spectrum of Product (**2g**) - α and β -E isomers.

Fig. 65. ^{13}C NMR spectrum of Product (2g) - α and $\beta\text{-}E$ isomers.

Spectra of Product 2h α/β-E: Yield 92%. (4/96) ¹H NMR (300 MHz, CDCl₃) δ = 7.34 (d, *J*=8.2 Hz, 12H), 6.90 (d, *J*=8.2 Hz, 12H), 6.66 (d, *J*=22.68 Hz, 12H), 0.31 (s, 36H), 0.05 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ = 153.43 (Si-CH=), 151.62 C-O, 147.89 (=CH-Si), 135.29, 135.19, 120.69, 1.46, -2.54. ³¹P NMR (162 MHz, CDCl₃) δ = 8.35. ²⁹Si NMR (79 MHz, CDCl₃) δ = -7.41, -12.08. Elemental Analysis Calc. for C₇₈H₁₂₆N₃O₆P₃Si₁₂: C, 57.41; H, 7.78; N, 2.58; O, 5.88; P, 5.69; Si, 20.65%; Found: C, 57.37; H, 7.77; N, 2.57%.

Fig. 66. ¹H NMR spectrum of Product (**2h**) - α and β -E isomers.

A library of multisubstituted cyclotriphosphazenes - molecular scaffolds for hybrid materials

Fig. 68. ²⁹Si NMR spectrum of Product (**2h**) - α and β -E isomers.

Fig. 69. ^{31}P NMR spectrum of Product (2h) - α and $\beta\text{-}E$ isomers.

Spectra of Product (2i) α/β-E: Yield 96% (4/96). ¹H NMR (300 MHz, CDCl₃) δ = 7.35 (d, *J*=10.7 Hz, 12H), 6.92 (d, *J*=10.8 Hz, 12H), 6.66 Si-CH= (d, *J*=30.50 Hz, 12H), 1.03 Si[CH(CH₃)₂]₃ (126H), 0.30 SiCH₃ (s, 36H). ¹³C NMR (75 MHz, CDCl₃) δ = 151.64 C-O, 150.91 Si-CH=CH-Si, 147.96 Si-CH=CH-Si, 135.44, 135.22, 120.64, 18.77 SiCH(<u>CH₃)₂</u>, 10.81 Si<u>CH</u>(CH₃)₂, -2.47 SiCH₃. ³¹P NMR (162 MHz, CDCl₃) δ = 8.22. ²⁹Si NMR (79 MHz, CDCl₃) δ = -1.63, -12.21. Elemental Analysis Calc. for C₁₁₄H₁₉₈N₃O₆P₃Si₁₂: C, 64.08; H, 9.34; N, 1.97; O, 4.49; P, 4.35; Si, 15.77%; Found: C, 64.14; H, 9.33; N, 1.98%.

Fig. 70. ¹H NMR spectrum of Product (**2i**) - α and β -E isomers.

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 72. ²⁹Si NMR spectrum of Product (**2i**) - α and β -E isomers.

Fig. 73. ^{31}P NMR spectrum of Product (2i) - α and $\beta\text{-}E$ isomers.

A library of multisubstituted cyclotriphosphazenes - molecular scaffolds for hybrid materials

Spectra of Product (2j) Product 2j α/β-E: Yield 94% (10/90). ¹H NMR (300 MHz, CDCl₃) δ = 7.49 (m, 12H), 7.34 (m, 30H), 6.93 (d, *J*= 8.07 Hz, 12H), 6.79 Si-CH= (d, *J*=22.60 Hz, 12H), 0.33, 0.31 SiCH₃ (s, 72H). ¹³C NMR (75 MHz, CDCl₃) δ = 151.62 C-O, 150.78 Si-CH=CH-Si, 150.15 Si-CH=CH-Si, 138.52, 135.28, 134.94, 133.99, 129.11, 127.92, 120.69, -2.57 SiCH₃, -2.77 SiCH₃. ³¹P NMR (162 MHz, CDCl₃) δ = 8.31. ²⁹Si NMR (79 MHz, CDCl₃) δ = -11.74, -11.82. Elemental Analysis Calc. for C₁₀₈H₁₃₈N₃O₆P₃Si₁₂: C, 64.72; H, 6.94; N, 2.10; O, 4.79; P, 4.64; Si, 16.82%; Found: C, 64.56; H, 6.92; N, 2.09%.

Fig. 74. ¹H NMR spectrum of Product (**2j**) - α and β -E isomers.

A library of multisubstituted cyclotriphosphazenes – molecular scaffolds for hybrid materials

Fig. 75. ^{13}C NMR spectrum of Product (2j) - α and $\beta\text{-}E$ isomers.

Fig. 77. ³¹P NMR spectrum of Product (**2***j*) - α and β -E isomers.

Fig. 76. ^{29}Si NMR spectrum of Product (2j) - α and $\beta\text{-E}$ isomers.