Supplementary Material

Selective and sensitive detection of cysteine in water and live cells by a coumarin-Cu²⁺ fluorescence ensemble

Yue Wang,^a Qingtao Meng,^{*a,b} Qian Han,^a Guangjie He,^{*c} Yaoyun Hu,^a Huan Feng,^a Hongmin Jia ^a Run Zhang,^d and Zhiqiang Zhang^{*b}

^a School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China. E-mail: qtmeng@ustl.edu.cn, Tel: +86-412-5929627

^b Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, P. R. China. E-mail: zhangzhiqiang@ustl.edu.cn, Tel: +86-421-5928002.

^c Department of Forensic Medicine, Xinxiang Medical University, XinXiang, Henan,
453003, P. R. China. E-mail: guangjiehe@163.com.

^d Australian Institute for Bioengineering and Nanotechnology, The University of Queensland,Brisbane,4072,Australia.

Fig. S2 ¹³H NMR of L (DMSO-*d*₆).

Fig. S4 Fluorescence responses of L (10 μ M) at different time in HEPES aqueous buffer (CH₃CN: HEPES = 7:3, 20 mM, pH = 7.4). Excitation at 420 nm.

Fig. S5 Absorption spectra of L (10 μ M) in HEPES aqueous buffer (CH₃CN: HEPES = 7:3, 20 mM, pH = 7.4) upon addition of various metal ions (10 μ M).

Fig. S6 Color responses of L (10 μ M) in HEPES aqueous buffer (CH₃CN: HEPES = 7:3, 20 mM, pH = 7.4) upon addition of various metal ions (10 μ M). From left to right: (1) free L, (2) Cu²⁺, (3) Fe³⁺, (4) Hg²⁺, (5) Cd²⁺, (6) Pb²⁺, (7) Zn²⁺, (8) Ni²⁺, (9) Mn²⁺, (10) Cr³⁺, (11) Ag⁺, (12) Ca²⁺, (13) Mg²⁺, (14) Ba²⁺, (15) Li⁺, (16) K⁺, (17) Na⁺, (18) All cations mixed.

Fig. S7 Job's plots according to the method for continuous variations. The total concentration of L (10 μ M) and Cu²⁺ is 10 μ M. Excitation at 420 nm.

Fig. S8 Time course of fluorescence intensity of L-Cu²⁺ (10 μ M) at 486 nm upon addition of Cys. Arrows represent sequentially addition of (1) 5 μ M, (2) 15 μ M and (3) 20 μ M Cys. Excitation was performed at 420 nm.

Fig. S9 Linear relationship between fluorescence intensity of L-Cu²⁺ (2 μ M) at 486 nm versus the concentration of Cys (0–1.0 μ M) in HEPES aqueous buffer (CH₃CN: HEPES = 7:3, 20 mM, pH = 7.4). Excitation was performed at 420 nm.

Fig. S10 Benesi-Hildebrand plot (emission at 486 nm) of $L-Cu^{2+}$ based on 1:2 binding stoichiometry with Cys. Excitation was performed at 420 nm.

Fig. S11 Colour responses of L-Cu²⁺ (10 μ M) in HEPES aqueous buffer (CH₃CN: HEPES = 7:3, 20 mM, pH = 7.4) upon addition of various biothiols and amino acids (30 μ M): (1) free L-Cu²⁺, (2) Cys, (3) Ala, (4) Asp, (5) Gln, (6) Gly, (7) Hcy, (8) Lys, (9) Phe, (10) Pro, (11) Ser, (12) Thr, (13) Try, (14) Val, (15) Leu, (16) His, (17) Arg, (18) Asn, (19) GSH, (20) Glu.

Table S1. Comparison of L-Cu²⁺ with recently reported fluorescent probes for biothiols detection.

Probes	Selectivity	Limit of detection (LOD)	Colour changes	Response time	Ref.
1	Cys, Hey and GSH	Cys: 0.518 µM	-	>10 min	1
		Hcy: 0.658 μM			
		GSH: 0.246 µM			

DACP-1 and DACP-2		For GSH:	-	within ~5–10 min	2
	Cys, Hcy and GSH	10.1 nM (DACP-1) and			
		17.0 nM (DACP-2)			
		For Cys:			
		$0.31~\mu M$ (DACP-1) and			
		1.27 μM (DACP-2)			
CNF	Cys/Hcy, GSH and H ₂ S	0.59 µM (for Cys)	-		3
		0.56 µM (for Hey)		Cys/Hcy: 30 min	
		0.78 µM (for GSH)		H ₂ S: 5 min	
		$0.52 \ \mu M \ (for \ H_2S)$			
CS-thiols	Cys, Hey and GSH	4.3 ×10 ⁻⁵ (for Cys)	-	within 10 min	4
1–Cu(II)	Cys, Hey and GSH	10 ⁻⁸ M (GSH)	Pink to green	10 min	5
NP	Cys, Hcy and GSH	1.5 µM (for Cys)	-	-	6
		1.8 µM (for Hcy)			
		2.2 µM (for GSH)			
HNA	Cys, Hcy and GSH	1.5 µM (for Cys)	Yellow to yellowish	-	7
		1.0 µM (for Hcy)			
		0.8 µM (for GSH)			
Droha ?	Cys (slight interference	0.094M	Colorlaga to vallow	5 min	8
Probe 2	from Hcy and GSH)	0.084 μΜ	Coloness to yellow		
probe 1	Cys and Hey	1.6×10 ⁻⁷ M (Cys)	Dark blue to yellow-	25 min	9
		1.8×10 ⁻⁷ M (Hcy)	green		
AQDA	Cys	1.58×10 ⁻⁷ M	Colorless to orange	90 min	10
R1	Cys	4.61×10 ⁻⁸ M	Pink to colorless	within 1.0 min	11
Cy-NB	Cys	0.2 µM	Blue to green	within 5 min	12
TP-NIR	Cys	0.2 µM	Yellowish to yellow	within 2 min	13
SBD-Cl	Cys	1.4×10 ⁻⁶ M	Yellowish to yellow	within about 1 h	14
BTAC	Cys	124 nM	Colorless to yellow	within 3 min	15
L-Cu ²⁺	Cys	15 nM	Yellow-yellowish	< 4 s	This
					work

References:

- 1. Q. Miao, Q. Li, Q. Yuan, L. Li, Z. Hai, S. Liu and G. Liang, *Anal. Chem.*, 2015, **87**, 3460–3466.
- S. V. Mulay, Y. Kim, M. Choi, D. Y. Lee, J. Choi, Y. Lee, S. Jon and D. G. Churchill, *Anal. Chem.*, 2018, 90, 2648–2654.
- 3. L. He, X. Yang, K. Xu, Y. Yang and W. Lin, *Chem. Commun.*, 2017, **53**, 13168–13171.
- 4. K. Liu, H. Shang, X. Kong and W. Lin, J. Mater. Chem. B, 2017, 5, 3836–3841.
- 5. H. S. Jung, J. H. Han, Y. Habata, C. Kang and J. S. Kim, *Chem. Commun.*, 2011, **47**, 5142–5144.
- Y. Wang, Z. Q. Zhang, Q. T. Meng, C. He, R. Zhang and C. Y. Duan, J. Lumin., 2016, 175, 122–128.

- H. M. Jia, M. Yang, Q. T. Meng, G. J. He, Y. Wang, Z. Z. Hu, R. Zhang and Z. Q. Zhang, Sensors, 2016, 16, 79; doi:10.3390/s16010079.
- 8. J. Guo, Z. Kuai, Z. Zhang, Q. Yang, Y. Shan and Y. Lia, RSC Adv., 2017, 7, 18867–18873.
- Z.-H. Fu, X. Han, Y. Shao, J. Fang, Z.-H. Zhang, Y.-W. Wang and Y. Peng, *Anal. Chem.*, 2017, 89, 1937–1944.
- 10. H. Lv, X.-F. Yang, Y. Zhong, Y. Guo, Z. Li and H. Li, Anal. Chem., 2014, 86, 1800-1807.
- 11. U. Diwan, V. Kumar, R. K. Mishra, N. K. Rana, B. Kochc and K. K. Upadhyay, *RSC Adv.*, 2016, **6**, 95722–95728.
- 12. K. Yin, F. Yu, W. Zhang, L. Chen, Biosens. Bioelectron., 2015, 74, 156-164.
- J. Wang, B. Li, W. Zhao, X. Zhang, X. Luo, M. E. Corkins, S. L. Cole, C. Wang, Y. Xiao, X. Bi, Y. Pang, C. A. McElroy, A. J. Bird and Y. Dong, *ACS Sens.*, 2016, 1, 882–887.
- 14. L. He, X. Yang, K. Xu and W. Lin, Anal. Chem., 2017, 89, 9567–9573.
- S. Manna, P. Karmakar, S. S. Ali, U. N. Guria, R. Sarkar, P. Datta, D. Mandalc and A. K. Mahapatra, *New J. Chem.*, 2018, **42**, 4951–4958.