SUPPORTING INFORMATION.

Structural characterization of a fluorescein hydrazone molecular switch with application towards logic gates[†]

Juan D. Villada,^a Richard F. D'Vries,^b Mario Macías, ^cFabio Zuluaga,^a Manuel N. Chaur,^a

a. Facultad de Ciencias Naturales y Exactas, Departamento de Química, Universidad del Valle, A.A 25360, Cali, Colombia.

^{b.} Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 No 62-00, Cali, Colombia.

· Departamento de Química, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia.

TABLE OF CONTENTS.

FIGURE S 1. ¹ H NMR SPECTRUM OF 2 IN DMSO- D6 AT 400 MHz	2
FIGURE S 2. ¹³ C NMR SPECTRUM OF 2 IN DMSO D6 AT 101 MHz.	2
FIGURE S 3. ¹ H NMR SPECTRUM OF 2-ZN IN DMSO-D6 AT 400 MHz.	4
FIGURE S 4. ¹ H NMR SPECTRUM OF 2-NI IN DMSO-D6 AT 400 MHz.	4
FIGURE S 5. ¹ H NMR SPECTRUM OF 2-CU IN DMSO- <i>D</i> ₆ AT 400 MHZ.	4
FIGURE S 6. (A) FULL CV OF FLUORESCEIN, AND DERIVATIVES (1) AND (2). (B) FULL CV OF COMPLEXES OF ZN ²⁺ , NI ²⁺ , CU ²⁺ WITH ACYLHIDRAZONE	
(2)	5
FIGURE S 7. (A) CVS AT DIFFERENT SCAN RATES OF 2-CU. (B) CVS AT DIFFERENT SCAN RATES OF 2-NI. (C) CVS AT DIFFERENT SCAN RATES OF	
Compound 2 . (D) (A) CVs at different Scan rates of Fluorescein	5
Figure S 8. UV-Visible spectra (A) and Fluorescence titration spectra (B) of compound 2 (50 µM) upon the addition of	
TRIMETHYLAMINE (TEA) AND TRIFLUOROACETIC ACID(TFA) ON ETHANOL.	6
Figure S 9 UV-Visible spectra (A) and Fluorescence titration spectra (B) of compound 2-Zn (50 μM) upon the addition of	
TRIMETHYLAMINE (TEA). ONSET : 2-zn before and after the addition of TEA	6
FIGURE S 10 UV-VISIBLE SPECTRA OF (A) COMPOUND 2-NI (50 μM) UPON THE ADDITION OF TRIMETHYLAMINE (TEA) ONSET: 2-NI BEFORE AND	
AFTER THE ADDITION OF TEA. (B) COMPOUND 2-CU (50 μM) UPON THE ADDITION OF TRIMETHYLAMINE (TEA) ONSET : 2-CU BEFORE AND	
AFTER THE ADDITION OF TEA	6
FIGURE S 12. COMPARISON OF BOTH 2-ZN COMPLEX AND ACYLHIDRAZONE 2 ON BASIC MEDIA.	7
FIGURE S 11. LINEARIZATION OF QUANTUM YIELD DATA FOR COMPOUNDS 2, 2-CU AND 2-ZN	7
FIGURE S 13. PARTIAL FT-IR OF 2, 2-NI, 2-ZN AND 2-CU.	8

	.5
TABLE S 2 LINEARIZATION DATA OF QUANTUM YIELD MEASURES.	.7
TABLE S3. QUANTUM YIELD OF THE COMPLEXES OF HYDRAZONE 2	.7

1. Synthesis

1.1. Synthesis of Fluorescein hydrazone (2)

Figure S 2. ¹³C NMR spectrum of **2** in DMSO d6 at 101 MHz.

1.1.1. Crystallographic Data of fluorescein hydrazone (2).

Table S 1. Crystallographic data and refinement parameters for fluorescein hydrazone (2).

Compound	fluorescein-hydrazone		
Empirical Formula	C ₂₃ H ₁₆ N ₃ O ₄ , C ₂₃ H ₁₆ N ₃ O ₄ , H ₂ O		
FW (g·mol ⁻¹)	887.86		
Temp. (K)	293		
Crystal system	Triclinic		
Space Group	Pī		
Unit cell			
a (Å)	9.9987(18)		
b (Å)	14.262(2)		
c (Å)	15.699(2)		
α (°)	97.420(12)		
β (°)	97.333(16)		
γ (°)	108.183(16)		
Volume (Å ³)	2075.3(6)		
Z	4		
ρ calcd (mg·m ⁻³)	1.423		
Abs.Coeff (mm ⁻¹)	0.099		
F(000)	924		
θ range (°)	2.7 to 27.1		
Reflections collected	/ 9136/9136		
Unique [R(int)]	[0.128]		
Completeness (%)	99		
Data / restraints	9136/0/638		
/ parameters			
Gof on F ²	1.03		
R1 [I>2σ(I)]	0.1139		
wR2[I>2σ(I)]	0.3660		

1.2. M²⁺ metal complex preparation.

Figure S 4. ¹H NMR spectrum of 2-Ni in DMSO-*d*₆ at 400 MHz.

1.2.3. 2Cu

Figure S 5.¹H NMR spectrum of 2-Cu in DMSO- d_6 at 400 MHz.

2. Electrochemical Characterization

Figure S 6. (A) full CV of Fluorescein, and derivatives (1) and (2). (B) Full CV of Complexes of Zn²⁺, Ni²⁺, Cu²⁺ with Acylhidrazone (2).

Figure S 7. (A) CVs at different Scan rates of **2-Cu**. (B) CVs at different Scan rates of **2-Ni**. (C) CVs at different Scan rates of Compound **2**. (D) (A) CVs at different Scan rates of Fluorescein

3. Spectroscopic Characterization.

Acid Base Titrations.

Figure S 8. UV-Visible spectra (A) and Fluorescence titration spectra (B) of compound **2** (50 μM) upon the addition of trimethylamine (TEA) and Trifluoroacetic acid(TFA) on ethanol.

Figure S 9 UV-Visible spectra (A) and Fluorescence titration spectra (B) of compound **2-Zn (**50 μM) upon the addition of trimethylamine (TEA). Onset : **2-zn** before and after the addition of TEA

Figure S 10 UV-Visible spectra of (A) compound **2-Ni (**50 μM) upon the addition of trimethylamine (TEA) Onset: **2-Ni** before and after the addition of TEA. (B) compound **2-Cu** (50 μM) upon the addition of trimethylamine (TEA) Onset : **2-Cu** before and after the addition of TEA

Figure S 11. Comparison of both **2-Zn** complex and acylhidrazone **2** on basic media.

Quantum Yield Calculations.

Quantum yield of all compounds were measured using a NaOH 0,1N using the slope comparative method using 490 nm as excitation wavelength for the emission data and a solution of fluorescein as Standard all the data its summary in the Table S 2

Figure S 12. Linearization of Quantum yield data for compounds 2, 2-Cu and 2-Zn

Plot	Fluorescein (Std)	(4)	(4)Cu	4(Zn)
			-309.42697 ±	
Intercept	2358.02032 ± 262.55487	-99.67836 ± 17.33	25.23	508.82688 ± 63.03529
	233051.59073 ±	17842.69129 ±	56858.21996	
Slope	6659.81189	928.38	± 1622.043	34867.49695 ± 3013.06635
r	0.99837	0.99463	0.99838	0.98539

Table S 2 Linearization data of quantum yield measures.

Table S3. Quantum Yield of the Complexes of hydrazone 2

Compound	Solvent (25°C)	Quantum Yield
Fluorescein	NaOH 0,1N at °C	0,891
1	0.02 at Buffer Tris HCl Buffer 25 °C	0,02 ²
2	Ethanolic NaOH 0,1N	0,07
2-Zn	Ethanolic NaOH 0,1N	0,15
2-Cu	Ethanol	0,26

Figure S 13. Partial FT-IR of 2, 2-Ni, 2-Zn and 2-Cu.

4. References.

- 1 C. Würth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, *Nat. Protoc.*, 2013, **8**, 1535–1550.
- 2 S.-Q. Wu, Q.-W. Xie, G.-Y. An, X. Chen, C.-M. Liu, A.-L. Cui and H.-Z. Kou, *Dalton Trans.*, 2013, **42**, 4369–72.