Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Table S1 Physical properties of as-prepared CeO2 and His-CeO2					
Sample	Lattice parameter (Å) ^a	Size (nm) ^a			
CeO ₂	5.4	10.65			
His-CeO ₂	5.42	12.26			

^a calculated from XRD.

a i	CeO ₂	1	His-CeO ₂		
Species	Binding energy (eV)	Content (%)	Binding energy (eV)	Content (%)	
Ce(IV)	882.2		882.2		
Ce(IV)	888.7		888.6		
Ce(IV)	898.3	02.07	898.1	00.24	
Ce(IV)	900.9	83.07	900.7	80.24	
Ce(IV)	907.9		907.6		
Ce(IV)	916.8		916.6		
Ce(III)	884.9	16.02	884.7	10.7(
Ce(III)	903.7	16.93	903.5	19.76	

Table S2 The binding energies and relative content of Ce species in CeO₂ and His-CeO₂

Table S3 The loadings of Pt species determined by ICP-OES

Catalysts	Pt (wt%)
Pt/C-JM	19.4
Pt/C-Z	18.3
Pt/CeO ₂ -C	18.7
Pt/His-CeO ₂ -C	18.6

Catalysts	Pt ⁰ (%)
Pt/C-Z	60.35
Pt/CeO ₂ -C	66.16
Pt/His-CeO ₂ -C	67.87

Table S4 The relative content of Pt species in catalysts determined by XPS spectra

Table S5 The po	sitive scan	peak cu	rrent den	sity norm	alized as	mass	activity 1	for Pt/His-	$-CeO_2-C$
and other recently	y reported c	atalysts							

Sample	Mass activity /	Scanning	Condition	References	
	A g _{Pt} ⁻¹	Rate / mV S ⁻¹			
Pt/CeO ₂ /graphene	366	100	$0.5 \text{ M H}_2 \text{SO}_4 +$	1	
		100	1 M CH ₃ OH	-	
$Dt/CeO_{2}/DANI$	361 3	100	0.5 M H ₂ SO ₄ +	2	
Pt/CeO ₂ /PANI	501.5	100	0.5 M CH ₃ OH	2	
	102.8	50	0.5 M H ₂ SO ₄ +	3	
Pt/1102-C	102.8	50	0.5 M CH ₃ OH	5	
Pt-MoO _x /CNTs	246.2	20	0.5 M H ₂ SO ₄ +	4	
			1 M CH ₃ OH	4	
Pt/MnO _x -	Р _х - Тs	50	0.5 M H ₂ SO ₄ +	E	
MWCNTs		50	1 M CH ₃ OH	3	
Pt-SiO ₂ /graphene	1047	50	$0.5 \text{ M H}_2 \text{SO}_4 +$	C	
		50	1 M CH ₃ OH	0	
Pt/Ce _{0.7} Mo _{0.3} O _{2-δ} -C	1888.4	50	0.5 M H ₂ SO ₄ +	7	
		30	1 M CH ₃ OH	7	
$Pt/Ce_{0.8}Sn_{0.2}O_{2-\delta}-C$	502	50	0.5 M H ₂ SO ₄ +	Q	
		30	0.5 M CH ₃ OH	0	
Pt/His-CeO ₂ -C	1116.9	50	0.5 M H ₂ SO ₄ +	This are the	
		50	1 M CH ₃ OH	I NIS WORK	

Fig. S1 TEM images of (a) CeO₂ and (b) His-CeO₂, the scar bar is 20 nm.

Fig. S2 XPS spectra for Ce 3d core level regions of CeO₂.

Fig. S3 TEM images of (a) Pt/C-Z and (b) Pt/CeO₂-C. Inserts are the size distribution of Pt NPs.

Fig. S4 Pt 4f XPS spectra of (a) Pt/C-Z; (b) Pt/CeO₂-C; The black, red, dark cyan, magenta, dark yellow lines represent the raw, the fitted, the Pt^{0} , the Pt^{2+} and the Pt^{4+} components' curves, respectively.

Fig. **S5** (a) CV curves of Pt/His-CeO₂-C with various loadings of His-CeO₂ in 0.5 M H₂SO₄ at 50 mV s⁻¹; (b) Mass activities of MOR recorded in 0.5 M H₂SO₄ + 1.0 M CH₃OH at 50 mV s⁻¹; (c) CO stripping curves in 0.5 M H₂SO₄ at 50 mV s⁻¹ in the first forward scan. Inset: magnified areas in the range of $0.4 \sim 0.75$ V. (d) Chronoamperometric curves of the prepared catalysts tested at 0.6 V.

References

- 1 X. Wang, X. Li, D. Liu, S. Song, H. Zhang, Chem. Commun., 2012, 48, 2885-2887.
- 2 H. Xu, A. L. Wang, Y. X. Tong, G. R. Li, Acs Catal., 2016, 6, 5198-5206.
- 3 Y. Fan, Z. Yang, P. Huang, X. Zhang, Y. M. Liu, Electrochim. Acta, 2013, 105, 157-161.
- 4 Z. M. Cui, S. P. Jiang, C. M. Li, Chem. Commun., 2011, 47, 8418-8420.
- 5 A. Nouralishahi, A. A. Khodadadi, Y. Mortazavi, A. Rashidi, M. Choolaei, *Electrochim. Acta*, 2014, 147, 192-200.
- 6 T. H. T. Vu, T. T. T. Tran, H. N. T. Le, L. T. Tran, P. H. T. Nguyen, H. T. Nguyen, N. Q. Bui, *Electrochim. Acta*, 2015, 161, 335-342.
- 7 G. Zhang, Z. Yang, W. Zhang, Y. Wang, J. Mater. Chem. A, 2017, 5, 1481-1487.
- 8 Y. Gu, C. Liu, Y. Li, X. Sui, K. Wang, Z. Wang, J. Power Sources, 2014, 265, 335-344.