SUPPORTING INFORMATION

First general synthesis of 2-C-(β -D-glycopyranosyl)pyrimidines and

their evaluation as inhibitors of some glycoenzymes

Eszter Szennyes,^a Éva Bokor,^{a*} Peter Langer,^b Gyöngyi Gyémánt,^c Tibor Docsa,^d

Ádám Sipos,^d László Somsák^{a*}

 ^a Department of Organic Chemistry, University of Debrecen, H-4002 POB 400, Debrecen, Hungary
^b Department of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
^c Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4002 POB 400, Debrecen, Hungary
^d Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary

Table of contents:

1. Synthetic details	. 2
1.1. General Methods	. 2
1.2. General procedure I for the synthesis of 2-(β -D-glucopyranosyl)-pyrimidin-4(3 <i>H</i>)-ones (3 , 4) by cyclocondensation of <i>C</i> -(β -D-glucopyranosyl)formamidines (1 , 2)	.3
1.3. General procedure II for the removal of <i>O</i> -benzyl protecting groups by catalytic hydrogenation under neutral conditions to get compounds 4 , 6 , 10	.3
1.4. General procedure III for the reaction of C -(2,3,4,6-tetra- O -benzyl- β -D-glucopyranosyl)formamidin (1) with malononitrile and ethyl cyanoacetate to get compounds 7a , b	ne .4
1.5. General procedure IV for the synthesis of 4,6-disubstituted-2-(β -D-glucopyranosyl)-pyrimidines (8 10) by cyclocondensation of <i>C</i> -(β -D-glucopyranosyl)formamidines (1, 2)	, .4
1.6. General procedure V for the removal of <i>O</i> -benzyl protecting groups by catalytic hydrogenation under acidic conditions to get compounds 9c,d	.5
1.7. General procedure VI for the synthesis of 2-glycosyl-6-methylpyrimidin-4(3 <i>H</i>)-ones (19-22) from glycosyl cyanides (15-18) by a <i>one-pot</i> three-step procedure	.5
1.8. Synthesis and characterization of the compounds	.6
2. Enzyme assays2	28
3. References 2	29
4. Copies of NMR and IR spectra of the new compounds	30

^{*} Corresponding authors: Bokor, É. tel - +3652512900 ext 22474; fax - +3652512744; e-mail – <u>bokor.eva@science.unideb.hu</u>; Somsák, L. tel - +3652512900 ext 22348; fax - +3652512744; e-mail – <u>somsak.laszlo@science.unideb.hu</u>

1. Synthetic details

1.1. General Methods

Melting points were measured on a Kofler hot-stage and are uncorrected. Optical rotations were determined with a Jasco P-2000 polarimeter at rt. NMR spectra were recorded with Bruker 360 $(360/90 \text{ MHz for } {}^{1}\text{H}/{}^{13}\text{C})$ or Bruker 400 (400/100 MHz for ${}^{1}\text{H}/{}^{13}\text{C})$ spectrometers. Chemical shifts are referenced to the internal TMS (¹H), or to the residual solvent signals (¹³C). Protonsignal assignments for compounds 3, 5, 7 are based on COSY correlations. IR spectra were recorded with a Jasco FT-IR 4100 spectrophotometer. Mass spectra were obtained by Thermo Scientific LTQ XL or 284 MicroTOF-Q type Qq-TOF MS (Bruker Daltonik, Bremen, 285 Germany) instruments. TLC was performed on DC-Alurolle Kieselgel 60 F254 (Merck), and the plates were visualised under UV light and by gentle heating (generally no spray reagent was used but, if more intense charring was necessary, the plate was sprayed with the following solution: abs. EtOH (95 mL), ccH₂SO₄ (5 mL) anisaldehyde (1 mL)). For column chromatography Kieselgel 60 (Merck, particle size 0.063-0.200 mm) was used. EtOAc, CHCl₃ and CH₂Cl₂ were distilled from P₄O₁₀ and stored over 4 Å molecular sieves. MeOH was purified by distillation after refluxing for a couple of hours with magnesium turnings and iodine. EtOH and DMF were purchased from Sigma-Aldrich. 1M solution of NaOMe in anhydrous MeOH and NaOEt in anhydrous EtOH was freshly prepared before using. Organic solutions were dried over anhydrous MgSO₄ and concentrated under diminished pressure at 40-60 °C (water bath). C-(2,3,4,6-Tetra-O-benzyl- β -D-glucopyranosyl)formamidine hydrochloride^{1, 2} (1) and Operacylated glycosyl cyanides (11,³ 15,⁴ 16,⁵ 17,⁶ 18⁷) were synthesized based on literature procedures. The α,β -unsaturated β -chloroketones were obtained by chlorination of the (pentane-2,4-dione/PCl₅,⁸ corresponding 1,3-diketones 1,1,1-trifluoropentane-2,4dione/ $(COCl)_2$,⁹ 1-phenylbutane-1,3-dione/ $(COCl)_2$,¹⁰ 4,4,4-trifluoro-1-phenylbutane-1,3-dione/ $SOCl_2$) according to the cited protocols.

1.2. General procedure I for the synthesis of 2-(β-D-glucopyranosyl)-pyrimidin-4(3H)-

ones (3, 4) by cyclocondensation of C-(β -D-glucopyranosyl)formamidines (1, 2)

The corresponding *C*-(β -D-glucopyranosyl)formamidine hydrochloride ($1^{1, 2}$ or **2**) was dissolved in anhydrous MeOH (2 mL/100 mg amidine), and a 1M solution of NaOMe in MeOH (3 equiv) was added. After 10 min, the appropriate 3-ketoester (2 equiv) was added to the reaction mixture and the stirring was continued at rt until the TLC showed complete conversion of the starting material (9 : 1 CHCl₃-MeOH and 1 : 1 hexane-EtOAc for compounds **1**, **3**, and 7 : 3 CHCl₃-MeOH for compounds **2**, **4**, respectively). The reaction mixture was then neutralized with glacial AcOH, and concentrated under diminished pressure. The crude product was purified by column chromatography.

1.3. General procedure II for the removal of *O*-benzyl protecting groups by catalytic hydrogenation under neutral conditions to get compounds 4, 6, 10

To a solution of the corresponding *O*-perbenzylated *C*-(β -D-glucopyranosyl)pyrimidine (**3**, **5** or **8**) in a mixture of anhydrous EtOAc (2 mL/100 mg substrate) and EtOH (4 mL/100 mg substrate) 20 % Pd(OH)₂/C (50 weight % of substrate) was added. The reaction mixture was then vigorously stirred at reflux temperature under H₂ atmosphere. After completion of the reaction monitored by TLC (1 : 1 hexane-EtOAc and 3 : 1 EtOAc-MeOH), the hot mixture was filtered through a pad of celite, and washed thoroughly with MeOH. The solvent was then evaporated under reduced pressure and the crude product was purified by column chromatography.

1.4. General procedure III for the reaction of C-(2,3,4,6-tetra-O-benzyl-β-D-

glucopyranosyl)formamidine (1) with malononitrile and ethyl cyanoacetate to get compounds 7a,b

To a solution of *C*-(2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl)formamidine hydrochloride^{1, 2} (1, 200 mg, 0.33 mmol) in anhydrous EtOH (5 mL) a 1M solution of NaOEt in EtOH (2 or 10 equiv, depending on the quantity of the reagent, see below) was added. After stirring the reaction mixture for 15 min at rt malononitrile (2 equiv) or ethyl cyanoacetate (10 equiv) was added. The stirring was continued at rt until the TLC (9 : 1 CHCl₃-MeOH, 1 : 1 hexane-EtOAc) indicated complete conversion of the starting material. The reaction mixture was then neutralized with glacial AcOH, and evaporated under diminished pressure. The resulting crude product was purified by column chromatography.

1.5. General procedure IV for the synthesis of 4,6-disubstituted-2-(β -D-glucopyranosyl)pyrimidines (8, 10) by cyclocondensation of *C*-(β -D-glucopyranosyl)formamidines (1, 2) The corresponding *C*-(β -D-glucopyranosyl)formamidine hydrochloride (1^{1, 2} or 2) and K₂CO₃ (4 equiv) in the presence of activated molecular sieves (4 Å) were suspended in anhydrous DMF (3 mL/100 mg substrate). This mixture was then cooled to 0 °C and the freshly prepared α , β unsaturated β -chloroketone (1.2 equiv) obtained from the corresponding 1,3-diketone was added. The reaction mixture was allowed to warm up to rt and the stirring was continued. After completion of the reaction (~ 2 d) monitored by TLC (9 : 1 CHCl₃-MeOH and 1 :1 hexane-EtOAc for compounds 1, 8, and 7 : 3 CHCl₃-MeOH for compounds 2, 10, respectively), the inorganic precipitates were filtered off, washed with MeOH, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography.

1.6. General procedure V for the removal of *O*-benzyl protecting groups by catalytic hydrogenation under acidic conditions to get compounds 9c,d

A degassed, vigorously stirred suspension of 20 % Pd(OH)₂/C (50 weight % of substrate) in a mixture of anhydrous EtOAc (2 mL/100 mg substrate) and EtOH (5 mL/100 mg substrate) was saturated with H₂. To this mixture a solution of the corresponding *O*-perbenzylated *C*- β -D-glucopyranosyl derivative in anhydrous EtOAc (3 mL/100 mg substrate), and a drop of ccHCl were added. The reaction mixture was then stirred under H₂ atmosphere at rt overnight. The completion of the reaction was judged by TLC (1 :1 hexane-EtOAc and 7 : 3 CHCl₃-MeOH) and the mixture was neutralized by the addition of NaHCO₃. The catalyst and the inorganic salts were filtered off through a pad of celite, and washed with MeOH. The solvent was removed under diminished pressure, and the resulting crude product was purified by column chromatography.

1.7. General procedure VI for the synthesis of 2-glycosyl-6-methylpyrimidin-4(*3H*)-ones (19-22) from glycosyl cyanides (15-18) by a *one-pot* three-step procedure

To a stirred solution of the corresponding cyanide (**15-18**) in a mixture of anhydrous CHCl₃ (2 mL / 1 g substrate) and MeOH (15 mL / 1 g substrate) a 1M solution of NaOMe in MeOH (20 mol %) was added at rt. After conversion of the starting material into the unprotected methyl *C*-glycopyranosyl formimidate (1 day) NH₄Cl (1.2 equiv) was added to the reaction mixture and the stirring was continued at rt. When TLC (7 : 3 CHCl₃-MeOH) indicated complete conversion of formimidate into the appropriate formamidine derivative (1 day) ethyl acetoacetate (2 equiv) and a 1M solution of NaOMe in MeOH (3 equiv) were added to the stirred reaction mixture. After 8 h the solution was neutralized with glacial acetic acid and the solvents were removed under reduced pressure. The residual crude product was purified either by column chromatography or by crystallization.

1.8. Synthesis and characterization of the compounds

C-(β-D-Glucopyranosyl)formamidine hydrochloride (2,6-anhydro-D-*glycero*-D-*gulo*heptonimidamide hydrochloride, 2)

A) A degassed, vigorously stirred suspension of 20 % Pd(OH)₂/C (300 mg) in a mixture of anhydrous EtOAc (10 mL) and EtOH (30 mL) was saturated with H₂. To this mixture a solution of *C*-(2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl)formamidine hydrochloride^{1, 2} (**1**, 3.00 g, 4.5 mmol) in anhydrous EtOAc (20 mL) and a drop of ccHCl were added. After stirring the reaction mixture under H₂ atmosphere at rt overnight (the completion of the reaction was judged by TLC (9 : 1 CHCl₃-MeOH and MeOH)), it was neutralized with NaHCO₃. The catalyst and the inorganic salts were filtered off through a pad of celite and washed thoroughly with MeOH (3 × 10 mL). The solvent was evaporated under diminished pressure and the residual crude product was purified by column chromatography (2 : 1 EtOAc-MeOH \rightarrow MeOH) to yield 1.19 g (99 %) colourless syrup. R_f = 0.21 (MeOH); [α]_D = +40 (c 0.24, DMSO);¹H NMR (400 MHz, CD₃OD) δ (ppm): 4.11 (1H, d, *J* = 9.2 Hz, H-1), 3.87 (1H, dd, *J* = 12.2, 2.0 Hz, H-6a), 3.78 (1H, dd, *J* = 12.2, 4.3 Hz, H-6b), 3.45-3.55 (4H, m, H-2, H-3, H-4, H-5); ¹³C NMR (90 MHz, CD₃OD) δ (ppm): 169.8 (*C*=N), 81.8, 79.2, 76.8, 73.7, 70.1 (C-1 – C-5), 61.9 (C-6). ESI-MS positive mode (m/z): calcd for C₇H₁₅N₂O₅+ [M+H]⁺: 207.10. Found: 207.12.

B) To a solution of 2,3,4,6-tetra-*O*-benzoyl- β -D-glucopyranosyl cyanide³ (**13**, 1.00 g, 1.65 mmol) in a mixture of anhydrous CHCl₃ (5 mL) and MeOH (15 mL) a 1M solution of NaOMe in MeOH (0.33 mL, 0.33 mmol, 20 mol %) was added. The mixture was stirred at rt and monitored by TLC (7 : 3 CHCl₃-MeOH). After conversion of the starting material (1 d) into the imidate **11** (R_f = 0.51, 7 : 3 CHCl₃-MeOH) the reaction mixture was neutralized with a cation exchange resin Amberlist 15 (H⁺ form). The resin was filtered off, and the solvent was removed.

The resulting oil was dissolved in a saturated NH₃ solution in MeOH (10 mL), NH₄Cl (88 mg, 1 equiv) was added, and stirred at rt. When TLC (7 : 3 CHCl₃-MeOH) indicated the disappearance of **11** (1 day) the solvent was removed under diminished pressure. Column chromatographic purification of the residue (7 : 3 CHCl₃-MeOH) yielded the title compound **2** contaminated with the *C*-(2-deoxy-D-*arabino*-hex-1-enopyranosyl)formamidine hydrochloride **12** (167 mg, **2** : **12** = 9 : 1).

6-Methyl-2-(2',3',4',6'-tetra-*O*-benzyl-β-D-glucopyranosyl)-pyrimidin-4(3*H*)-one (3a)

Prepared from compound $1^{1,2}$ (400 mg, 0.66 mmol) and ethyl acetoacetate (168 µL, 1.33 mmol) according to general procedure I. Reaction time: 1 day. Purified by column chromatography (1 : 1 hexane-EtOAc) to yield 332 mg (79 %) white amorphous solid. $R_f = 0.18$ (2 : 3 hexane-EtOAc); $[\alpha]_D = +71$ (c 0.24, CH₂Cl₂); IR (KBr) v_{max} (cm⁻¹): 1682 (C=O); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 11.48 (1H, broad s, NH), 7.33-7.10 (20H, m, aromatics), 6.10 (1H, s, Py-H-5), 4.92, 4.87 (2 × 1H, 2 d, J = 11.0 Hz, Ph*CH*₂), 4.85, 4.57 (2 × 1H, 2 d, J = 10.8 Hz, Ph*CH*₂), 4.66, 4.40 (2 × 1H, 2 d, J = 11.0 Hz, Ph*CH*₂), 4.56, 4.47 (2 × 1H, 2 d, J = 12.1 Hz, Ph*CH*₂), 4.26 (1H, d, J = 9.2 Hz, H-1'), 3.81-3.78 (2H, m, H-2', H-3'), 3.76-3.71 (3H, m, H-4', H-6'a, H-6'b), 3.64 (1H, ddd, J = 9.4, 3.5, 2.0 Hz, H-5'), 2.23 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 165.0, 163.2, 156.8 (Py-C-2, Py-C-4, Py-C-6), 138.4, 138.0, 137.8, 137.5 (aromatics, C_q), 128.6-127.9 (aromatics), 112.7 (Py-C-5), 86.4, 80.1, 79.2, 78.8, 77.5 (C-1' – C-5'), 75.7, 75.2, 74.9, 73.5 (4 × Ph*C*H₂), 68.8 (C-6'), 24.0 (CH₃). ESI-MS positive mode (m/z): calcd for C₃₉H₄₁N₂O₆⁺ [M+H]⁺: 633.3. Found: 633.5.

6-(Chloromethyl)-2-(2',3',4',6'-tetra-*O*-benzyl-β-D-glucopyranosyl)-pyrimidin-4(3*H*)-one (3b)

Prepared from compound $1^{1,2}$ (200 mg, 0.33 mmol) and ethyl 4-chloroacetoacetate (90 µL, 0.66 mmol) according to general procedure I. Reaction time: 2 day. Purified by column chromatography (1 : 1 hexane-EtOAc) to yield 193 mg (87 %) white amorphous solid. $R_f = 0.42$ (2 : 3 hexane-EtOAc); $[\alpha]_D = -2$ (c 0.28, CH₂Cl₂); IR (KBr) ν_{max} (cm⁻¹): 1682 (C=O); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 11.96 (1H, broad s, NH), 7.33-7.09 (20H, m, aromatics), 6.42 (1H, s, Py-H-5), 4.92, 4.88 (2 × 1H, 2 d, *J* = 11.1 Hz, Ph*CH*₂), 4.86, 4.58 (2 × 1H, 2 d, *J* = 10.8 Hz, Ph*CH*₂), 4.69, 4.46 (2 × 1H, 2 d, *J* = 11.3 Hz, Ph*CH*₂), 4.56, 4.47 (2 × 1H, 2 d, *J* = 12.1 Hz, Ph*CH*₂), 4.28 (1H, d, *J* = 9.2 Hz, H-1'), 4.26 (2H, s, *CH*₂Cl), 3.87-3.80 (2H, m, H-2', H-3'), 3.76-3.72 (3H, m, H-4', H-6'a, H-6'b), 3.66 (1H, ddd, *J* = 9.1, 3.4, 2.1 Hz, H-5'); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.4 (Py-C-4), 162.3 (Py-C-6), 157.8 (Py-C-2), 138.3, 137.9, 137.7, 137.4 (aromatics, C_q), 128.5-127.8 (aromatics), 112.8 (Py-C-5), 86.4, 79.6, 79.2, 78.8, 77.5 (C-1' – C-5'), 75.7, 75.1, 74.8, 73.5 (4 × Ph*CH*₂), 68.8 (C-6'), 44.9 (*C*H₂Cl). ESI-MS positive mode (m/z): calcd for C₃₉H₄₀ClN₂O₆⁺ [M+H]⁺: 667.3. Found: 667.5.

5-Chloro-6-methyl-2-(2',3',4',6'-tetra-*O*-benzyl-β-D-glucopyranosyl)-pyrimidin-4(3*H*)one (3c)

Prepared from compound $1^{1,2}$ (200 mg, 0.33 mmol) and ethyl 2-chloroacetoacetate (90 µL, 0.66 mmol) according to general procedure I. Reaction time: 2 day. Purified by column chromatography (3 : 2 hexane-EtOAc) to yield 133 mg (60 %) white amorphous solid. $R_f =$

0.58 (2 : 3 hexane-EtOAc); $[\alpha]_D = -5$ (c 0.25, CH₂Cl₂); IR (KBr) ν_{max} (cm⁻¹): 1666 (C=O); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 11.67 (1H, broad s, NH), 7.35-7.08 (20H, m, aromatics), 4.93, 4.89 (2 × 1H, 2 d, J = 11.2 Hz, Ph*CH*₂), 4.85, 4.56 (2 × 1H, 2 d, J = 10.8 Hz, Ph*CH*₂), 4.70, 4.44 (2 × 1H, 2 d, J = 11.4 Hz, Ph*CH*₂), 4.54, 4.48 (2 × 1H, 2 d, J = 12.2 Hz, Ph*CH*₂), 4.25 (1H, d, J = 9.1 Hz, H-1'), 3.83-3.73 (5H, m, H-2', H-3', H-4', H-6'a, H-6'b), 3.66 (1H, ddd, J = 9.4, 3.6, 1.9 Hz, H-5'), 2.37 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.7, 159.1 (Py-C-4, Py-C-6), 154.1 (Py-C-2), 138.3, 137.9, 137.6, 137.3 (aromatics, C_q), 128.6-127.9 (aromatics), 120.6 (Py-C-5), 86.4, 79.5, 79.0, 78.4, 77.6 (C-1' – C-5'), 75.7, 75.3, 74.8, 73.5 (4 × Ph*C*H₂), 68.9 (C-6'), 22.2 (CH₃). ESI-MS positive mode (m/z): calcd for C₃₉H₄₀ClN₂O₆⁺ [M+H]⁺: 667.3. Found: 667.5.

6-Phenyl-2-(2',3',4',6'-tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidin-4(3H)-one (3d)

Prepared from compound $1^{1, 2}$ (400 mg, 0.66 mmol) and ethyl benzoylacetate (230 µL, 1.33 mmol) according to general procedure I. Reaction time: 2 day. Purified by column chromatography (1 : 1 hexane-EtOAc) to yield 200 mg (43 %) colourless syrup. R_f = 0.39 (2 : 3 hexane-EtOAc); [α]_D = +32 (c 0.26, CH₂Cl₂); IR (KBr) v_{max} (cm⁻¹): 1658 (C=O); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 12.11 (1H, broad s, NH), 7.97 (2H, d, *J* = 7.9 Hz, aromatics), 7.47-7.41 (3H, aromatics), 7.35-7.01 (20H, m, aromatics), 6.73 (1H, s, Py-H-5), 4.95, 4.90 (2 × 1H, 2 d, *J* = 11.0 Hz, Ph*CH*₂), 4.88, 4.62 (2 × 1H, 2 d, *J* = 10.1 Hz, Ph*CH*₂), 4.69, 4.42 (2 × 1H, 2 d, *J* = 10.8 Hz, Ph*CH*₂), 4.59, 4.49 (2 × 1H, 2 d, *J* = 12.1 Hz, Ph*CH*₂), 4.44 (1H, d, *J* = 9.1 Hz, H-1'), 3.97 (1H, pseudo t, *J* = 9.3, 9.1 Hz, H-2'), 3.87 (1H, pseudo t, *J* = 9.4, 9.3 Hz, H-3'), 3.81 (1H, pseudo t, *J* = 9.4, 9.1 Hz, H-4'), 3.78-3.75 (2H, m, H-6'a, H-6'b), 3.72 (1H, ddd, *J* = 9.1, 3.4, 2.0 Hz, H-5'); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 164.1 (Py-C-4), 162.0 (Py-C-6),

157.4 (C-2), 138.4, 138.0, 137.8, 137.3, 136.1 (aromatics, C_q), 130.7, 128.7-127.8, 127.4 (aromatics), 109.3 (Py-C-5), 86.4, 80.1, 79.2, 79.1, 77.6 (C-1' – C-5'), 75.8, 75.1, 75.0, 73.5 (4 × Ph*C*H₂), 68.9 (C-6'). ESI-MS positive mode (m/z): calcd for C₄₄H₄₃N₂O₆⁺ [M+H]⁺: 695.3. Found: 695.4.

2-(β-D-Glucopyranosyl)-6-methylpyrimidin-4(3*H*)-one (4a)

A) From compound 2 (100 mg, 0.41 mmol) and ethyl acetoacetate (104 μ L, 0.82 mmol) according to general procedure I. Reaction time: 6 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 98 mg (88 %) white amorphous solid.

B) From compound **3a** (300 mg, 0.47 mmol) according to general procedure II. Reaction time: 6 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 80 mg (62 %) white amorphous solid.

C) 2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl cyanide³ (**13**, 3.00 g, 5 mmol) was converted into compounds **2** and **12** via imidate **11** in a two-step procedure as described for compound **2** in method **B**. Without column chromatographic purification the crude mixture of **2** and **12** was dissolved in anhydrous MeOH (10 mL), ethyl acetoacetate (1.12 mL, 9.9 mmol) and a 1M solution of NaOMe in MeOH (15 mL, 14.85 mmol) were added. The reaction mixture was stirred at rt until the TLC (7 : 3 CHCl₃-MeOH) showed disappearance of the amidine intermediates. Upon neutralization of the reaction mixture by a cation exchange resin Amberlist 15 (H⁺ form) a white solid started to precipitate. By heating the reaction mixture at boiling temperature the precipitates were redissolved and the resin was filtered off from the hot mixture. The reaction mixture was then cooled to rt and the precipitated white solid was filtered off. Yield: 575 mg (43 % for three steps). R_f = 0.43 (2 : 1 EtOAc-MeOH); [α]_D = +13 (c 0.17, DMSO); ¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 12.25 (1H, broad s, NH), 6.12 (1H, s, Py-H-5), 5.13-4.57 (broad signals, OH), 3.96 (1H, d, J = 9.5 Hz, H-1'), 3.67 (1H, dd, J = 12.0, 2.1 Hz, H-6'a), 3.52 (1H, pseudo t, J = 9.5, 9.3 Hz, H-2'), 3.44 (1H, dd, J = 12.0, 5.2 Hz, H-6'b), 3.25-3.13 (3H, m, H-3', H-4', H-5'), 2.17 (3H, s, CH₃); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 163.8, 162.1, 158.4 (Py-C-2, Py-C-4, Py-C-6), 111.7 (Py-C-5), 81.4, 79.0, 77.6, 71.8, 69.5 (C-1' - C-5'), 61.1 (C-6'), 23.3 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₁H₁₇N₂O₆⁺ [M+H]⁺: 273.11. Found: 273.12.

6-Chloromethyl-2-(β-D-glucopyranosyl)-pyrimidin-4(3*H*)-one (4b)

Prepared from compound **2** (100 mg, 0.41 mmol) and ethyl 4-chloroacetoacetate (112 µL, 0.82 mmol) according to general procedure I. Reaction time: 6 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 74 mg (59 %) white amorphous solid. $R_f = 0.29$ (3 : 1 EtOAc-MeOH); $[\alpha]_D = +95$ (c 0.16, DMSO); ¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 12.28 (1H, broad s, NH), 6.40 (1H, s, Py-H-5), 5.10-4.62 (broad signals, OH), 4.50 (2H, s, *CH*₂Cl), 4.00 (1H, d, *J* = 9.6 Hz, H-1'), 3.67 (1H, dd, *J* = 11.9, 2.0 Hz, H-6'a), 3.54 (1H, pseudo t, *J* = 9.6, 9.4 Hz, H-2'), 3.45 (1H, dd, *J* = 11.9, 5.2 Hz, H-6'b), 3.28-3.16 (3H, m, H-3', H-4', H-5'); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 162.8, 161.5, 159.9 (Py-C-2, Py-C-4, Py-C-6), 112.0 (Py-C-5), 81.4, 79.2, 77.5, 71.8, 69.5 (C-1' – C-5'), 61.1 (C-6'), 45.2 (*C*H₂Cl). ESI-MS positive mode (m/z): calcd for C₁₁H₁₆ClN₂O₆⁺ [M+H]⁺: 307.1. Found: 307.2.

5-Chloro-2-(β-D-glucopyranosyl)-6-methylpyrimidin-4(3*H*)-one (4c)

Prepared from compound **2** (100 mg, 0.41 mmol) and ethyl 2-chloroacetoacetate (115 μ L, 0.82 mmol) according to general procedure I. Reaction time: 6 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 92 mg (73 %) white amorphous solid. R_f = 0.29 (3 : 1 EtOAc-MeOH); [α]_D = +11 (c 0.13, DMSO); ¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 12.90 (1H, broad s, NH), 5.16-4.15 (broad signals, OH), 3.97 (1H, d, *J* = 9.6 Hz, H-1'), 3.67 (1H, dd, *J* = 12.0, 2.0 Hz, H-6'a), 3.51 (1H, pseudo t, *J* = 9.6, 9.4 Hz, H-2'), 3.45 (1H, dd, *J* = 12.0, 4.6 Hz, H-6'b), 3.27-3.16 (3H, m, H-3', H-4', H-5'), 2.33 (3H, s, CH₃); ¹³C NMR (90 MHz, DMSO-d₆) δ (ppm): 159.2, 158.5, 156.3 (Py-C-2, Py-C-4, Py-C-6), 118.8 (Py-C-5), 81.3, 79.1, 77.4, 71.8, 69.4 (C-1' – C-5'), 61.1 (C-6'), 21.7 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₁H₁₆ClN₂O₆⁺ [M+H]⁺: 307.1. Found: 307.2.

2-(β-D-Glucopyranosyl)-6-phenylpyrimidin-4(3*H*)-one (4d)

A) From compound 2 (100 mg, 0.41 mmol) and ethyl benzoylacetate (143 μ L, 0.82 mmol) according to general procedure I. Reaction time: 6 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 90 mg (65 %) white amorphous solid.

B) From compound **3d** (100 mg, 0.14 mmol) according to general procedure II. Reaction time: 5 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 37 mg (77 %) white amorphous solid.

C) 2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl cyanide³ (**13**, 1.00 g, 1.65 mmol) was converted into compounds **2** and **12** via imidate **11** in a two-step procedure as described for

compound 2 in method **B**. Without column chromatographic purification the crude mixture of 2 and 12 was dissolved in anhydrous MeOH (10 mL), ethyl benzoylacetate (0.57 mL, 3.3 mmol) and a 1M solution of NaOMe in MeOH (5 mL, 4.95 mmol) were added. The reaction mixture was stirred at rt until the TLC (7 : 3 CHCl₃-MeOH) showed disappearance of the amidine intermediates. The reaction mixture was neutralized with a cation exchange resin Amberlist 15 (H⁺ form), filtered and concentrated to quarter of its volume. After addition of Et₂O (20 mL) the precipitated crude product was filtered off and subsequently purified by column chromatography (5 : 1 EtOAc-MeOH). Yield: 137 mg (25 % for three steps). $R_f = 0.39$ (3:1 EtOAc-MeOH); $[\alpha]_D = +31$ (c 0.21, DMSO); ¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 12.46 (1H, broad s, NH), 8.05 (2H, d, J = 7.1 Hz, Ph), 7.50-7.48 (3H, m, Ph), 6.83 (1H, s, Py-H-5), 5.09-4.58 (broad signals, OH), 4.09 (1H, d, J = 9.6 Hz, H-1'), 3.70 (1H, dd, J = 12.0, 2.1 Hz, H-6'a), 3.66 (1H, pseudo t, J = 9.6, 9.4 Hz, H-2'), 3.48 (1H, dd, J = 12.0, 5.3 Hz, H-6'b), 3.31-3.20 (3H, m, H-3', H-4', H-5'); ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 163.0, 160.2, 158.9 (Py-C-2, Py-C-4, Py-C-6), 136.1, 130.5, 128.7 (2), 127.0 (2) (Ph), 108.5 (Py-C-5), 81.4, 79.5, 77.6, 71.7, 69.5 (C-1'-C-5'), 61.1 (C-6'). ESI-MS positive mode (m/z): calcd for C₁₆H₁₉N₂O₆⁺ [M+H]⁺: 335.1. Found: 335.3.

6-Hydroxy-2-(2',3',4',6'-tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidin-4(3H)-one (5)

To a solution of compound $1^{1, 2}$ (200 mg, 0.33 mmol) in anhydrous MeOH (2 mL) dimethyl malonate (379 µL, 3.32 mmol, 10 equiv) and a 1M solution of NaOMe in MeOH (3.32 mL, 3.32 mmol, 10 equiv) were added. The reaction mixture was stirred at rt until the TLC (9:1 CHCl₃-MeOH) showed total consumption of the starting material (1 d). The reaction mixture was then neutralized with glacial AcOH and the solvent was removed under reduced pressure.

The residue was purified by column chromatography (1 : 2 \rightarrow 1 : 4 hexane-EtOAc) to yield 172 mg (82 %) white amorphous solid. R_f = 0.63 (9 : 1 CHCl₃-MeOH); [α]_D = +34 (c 0.24, CH₂Cl₂); IR (KBr) ν_{max} (cm⁻¹): 1650 (C=O); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 11.01 (2H, 2 broad s, exchangeable protons), 7.31-7.07 (20H, m, aromatics), 5.54 (1H, s, Py-H-5), 4.92, 4.88 (2 × 1H, 2 d, *J* = 11.1 Hz, Ph*CH*₂), 4.83, 4.56 (2 × 1H, 2 d, *J* = 10.9 Hz, Ph*CH*₂), 4.64, 4.38 (2 × 1H, 2 d, *J* = 11.2 Hz, Ph*CH*₂), 4.51, 4.46 (2 × 1H, 2 d, *J* = 12.3 Hz, Ph*CH*₂), 4.64, 4.38 (2 × 1H, 2 d, *J* = 11.2 Hz, Ph*CH*₂), 4.51, 4.46 (2 × 1H, 2 d, *J* = 12.3 Hz, Ph*CH*₂), 4.21 (1H, d, *J* = 9.1 Hz, H-1'), 3.85 (1H, pseudo t, *J* = 9.3, 9.0 Hz, H-3'), 3.72-3.65 (5H, m, H-2', H-4', H-5', H-6'a, H-6'b); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 166.8, 158.9 (Py-C-2, Py-C-4, Py-C-6), 138.2, 137.9, 137.7, 136.9 (aromatics, C_q), 128.6-127.9 (aromatics), 91.3 (Py-C-5), 86.4, 79.5, 79.1, 77.6 (2) (C-1' - C-5'), 75.8, 75.1, 74.9, 73.5 (4 × Ph*C*H₂), 69.0 (C-6'). ESI-MS positive mode (m/z): calcd for C₃₈H₃₉N₂O₇⁺ [M+H]⁺: 635.3. Found: 635.5.

2-(β-D-Glucopyranosyl)-6-hydroxy-pyrimidin-4(3*H*)-one (6)

A) Compound 2 (100 mg, 0.41 mmol) and dimethyl malonate (471 μ L, 4.12 mmol, 10 equiv) were dissolved in anhydrous MeOH (1 mL), and a 1M solution of NaOMe in MeOH (4.12 mL, 4.12 mmol, 10 equiv) was added. The reaction mixture was stirred at rt overnight. The completion of the reaction was monitored by TLC (7:3 CHCl₃-MeOH and 1 : 2 CHCl₃-MeOH), then the mixture was neutralized with glacial AcOH, and concentrated under diminished pressure. The residue was purified by column chromatography (1 : 1 CHCl₃-MeOH) to yield 80 mg (71 %) white amorphous solid.

B) From compound **5** (100 mg, 0.16 mmol) according to general procedure II. Reaction time: 4 h. Purified by column chromatography (1 : 1 CHCl₃-MeOH) to yield 20 mg (47 %) colourless syrup. $R_f = 0.35$ (1 : 2 CHCl₃-MeOH); $[\alpha]_D = +60$ (c 0.16, H₂O); ¹H NMR (400 MHz, DMSO- d₆) δ (ppm): 5.78-5.13 (broad signals, OH), 4.57 (1H, s, Py-H-5), 3.88 (1H, d, J = 9.3 Hz, H-1'), 3.67 (1H, dd, J = 12.0, 2.3 Hz, H-6'a), 3.42 (1H, dd, J = 12.0, 6.5 Hz, H-6'b), 3.33 (1H, pseudo t, J = 9.3, 9.1 Hz, H-2'), 3.25 (1H, pseudo t, J = 9.2, 9.1 Hz, H-3' or H-4'), 3.22 (1H, dd, J = 9.1, 6.5, 2.3 Hz, H-5'), 3.06 (1H, pseudo t, J = 9.2, 9.1 Hz, H-3' or H-4'); ¹³C NMR (90 MHz, D₂O + 1 drop of CD₃OD) δ (ppm): 171.4 (Py-C-4, Py-C-6), 158.8 (Py-C-2), 90.1 (Py-C-5), 80.8, 78.6, 77.5, 73.1, 69.9 (C-1' – C-5'), 61.5 (C-6'). ESI-MS positive mode (m/z): calcd for C₁₀H₁₅N₂O₇⁺ [M+H]⁺: 275.09. Found: 275.08.

2-(Amino(2',3',4',6'-tetra-O-benzyl-β-D-glucopyranosyl)methylene)malononitrile (7a)

Prepared from compound $1^{1, 2}$ (200 mg, 0.33 mmol) and malononitrile (44 mg, 0.66 mmol, 2 equiv) according to general procedure III. Reaction time: 2 h. Purified by column chromatography (2 : 1 hexane-EtOAc) to yield 162 mg (79 %) pale yellow amorphous solid. R_f = 0.38 (1 : 1 hexane-EtOAc); [α]_D = +87 (c 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.31-7.16 (20H, m, aromatics), 6.33, 5.87 (2 × 1H, 2 broad s, NH₂), 4.88, 4.83 (2 × 1H, 2 d, *J* = 10.9 Hz, Ph*CH*₂), 4.85, 4.55 (2 × 1H, 2 d, *J* = 11.0 Hz, Ph*CH*₂), 4.77, 4.60 (2 × 1H, 2 d, *J* = 11.3 Hz, Ph*CH*₂), 4.49, 4.45 (2 × 1H, 2 d, *J* = 12.2 Hz, Ph*CH*₂), 4.34 (1H, d, *J* = 9.2 Hz, H-1'), 3.78 (1H, pseudo t, *J* = 9.4, 9.0 Hz, H-3'), 3.72-3.65 (3H, m, H-4', H-6'a, H-6'b), 3.55 (1H, ddd, *J* = 9.5, 3.5, 2.0 Hz, H-5'), 3.47 (1H, pseudo t, *J* = 9.4, 9.2 Hz, H-2'); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.1 (*C*=C(CN)₂), 138.1, 137.9, 137.5, 136.9 (aromatics, C_q), 128.7-127.9 (aromatics), 113.9, 113.7 (2 × *C*≡N), 86.1, 80.1, 78.7, 77.0, 76.3 (C-1' – C-5'), 75.9, 75.2, 75.1, 73.7 (4 × Ph*C*H₂), 68.5 (C-6'), 55.0 (C=*C*(CN)₂). ESI-MS positive mode (m/z): calcd for C₃₈H₃₇N₃NaO₅⁺ [M+Na]⁺: 638.263. Found: 638.266; C₃₈H₃₇KN₃O₅⁺ [M+K]⁺: 654.236. Found: 654.238.

(Z)-Ethyl 3-amino-2-cyano-3-(2',3',4',6'-tetra-O-benzyl-β-D-glucopyranosyl)acrylate (7b)

Prepared from compound $1^{1,2}$ (200 mg, 0.33 mmol) and ethyl cyanoacetate (354 µL, 0.66 mmol, 10 equiv) according to general procedure III. Reaction time: 6 h. Purified by column chromatography (2 : 1 hexane-EtOAc) to yield 92 mg (42 %) pale yellow amorphous solid. R_f = 0.51 (1 : 1 hexane-EtOAc); [α]_D = +35 (c 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.89 (1H, broad s, NH₂), 7.33-7.16 (20H, m, aromatics), 6.37 (1H, broad s, NH₂), 4.87, 4.80 (2 × 1H, 2 d, *J* = 10.9 Hz, Ph*CH*₂), 4.72, 4.60 (2 × 1H, 2 d, *J* = 11.2 Hz, Ph*CH*₂), 4.82, 4.56 (2 × 1H, 2 d, *J* = 11.6 Hz, Ph*CH*₂), 4.51, 4.47 (2 × 1H, 2 d, *J* = 12.2 Hz, Ph*CH*₂), 4.46 (1H, d, *J* = 9.0 Hz, H-1'), 4.21 (2H, q, *J* = 7.1 Hz, *CH*₂CH₃), 3.80 (1H, pseudo t, *J* = 9.2, 9.1 Hz, H-3'), 3.73-3.65 (3H, m, H-4', H-6'a, H-6'b), 3.58 (1H, ddd, *J* = 9.5, 3.5, 1.9 Hz, H-5'), 3.52 (1H, pseudo t, *J* = 9.1, 9.0 Hz, H-2'), 1.31 (3H, t, *J* = 7.1 Hz, CH₂*CH*₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 168.3 (*C*=CCN(COOEt)), 167.5 (*C*=O), 138.3, 138.0, 137.8, 137.3 (aromatics, C_q), 128.6-127.8 (aromatics), 117.5 (*C*=N), 86.1, 81.3, 78.5, 77.2 (2) (C-1' – C-5'), 75.7, 75.3, 75.0 (3 × Ph*C*H₂), 74.1 (C=*C*CN(COOEt)), 73.6 (Ph*C*H₂), 68.7 (C-6'), 60.8 (*C*H₂CH₃), 14.5 (CH₂*C*H₃). ESI-MS positive mode (m/z): calcd for C₄₀H₄₂N₂NaO7⁺ [M+Na]⁺: 685.288. Found: 685.291; C₄₀H₄₂KN₂O7⁺ [M+K]⁺: 701.262. Found: 701.266.

4,6-Dimethyl-2-(2',3',4',6'-tetra-*O*-benzyl-β-D-glucopyranosyl)-pyrimidine (8a)

Prepared from compound $\mathbf{1}^{1,2}$ (400 mg, 0.66 mmol) and the α,β -unsaturated β -chloroketone (94 mg, 0.80 mmol) obtained from pentane-2,4-dione⁸ according to general procedure IV. Purified

by column chromatography (2 : 1 hexane-EtOAc) to yield 270 mg (65 %) colourless syrup. R_f = 0.33 (1 : 1 hexane-EtOAc); $[\alpha]_D = +3$ (c 0.21, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.36-6.84 (20H, m, aromatics), 6.86 (1H, s, Py-H-5), 4.94, 4.91 (2 × 1H, 2 d, *J* = 11.2 Hz, Ph*CH*₂), 4.84, 4.56 (2 × 1H, 2 d, *J* = 10.7 Hz, Ph*CH*₂), 4.62, 4.23 (2 × 1H, 2 d, *J* = 11.1 Hz, Ph*CH*₂), 4.59, 4.49 (2 × 1H, 2 d, *J* = 12.2 Hz, Ph*CH*₂), 4.49 (1H, d, *J* = 9.1 Hz, H-1'), 4.20 (1H, pseudo t, *J* = 9.4, 9.1 Hz, H-2'), 3.88 (1H, pseudo t, *J* = 9.4, 9.0 Hz, H-4'), 3.81 (1H, pseudo t, *J* = 9.5, 9.0 Hz, H-4'), 3.78-3.72 (2H, m, H-6'a, H-6'b), 3.71-3.66 (1H, m, H-5'), 2.45 (6H, s, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 167.0 (2), 165.4 (Py-C-2, Py-C-4, Py-C-6), 138.9, 138.4, 138.2 (2) (aromatics, C_q), 128.5-127.4 (aromatics), 119.6 (Py-C-5), 87.2, 83.3, 81.3, 79.7, 78.2 (C-1' - C-5'), 75.6, 75.2, 74.6, 73.5 (4 × Ph*C*H₂), 69.0 (C-6'), 24.0 (2) (2 × CH₃). ESI-MS positive mode (m/z): calcd for C₄₀H₄₃N₂O₅⁺ [M+H]⁺: 631.3. Found: 631.5.

$\label{eq:2.1} 4-Methyl-2-(2`,3`,4`,6`-tetra-{\it O}-benzyl-\beta-D-glucopyranosyl)-6-trifluoromethyl-2-(2`,3`,4`,6`-tetra-{\it O}-benzyl-\beta-D-glucopyranosyl)-6-trifluoromethyl-2-(2',3',4',6'-tetra-{\it O}-benzyl-\beta-D-glucopyranosyl)-6-trifluoromethyl-2-(2',3',4',6'-tetra-{\it O}-benzyl-\beta-D-glucopyranosyl)-6-trifluoromethyl-2-(2',3',4',6'-tetra-{\it O}-benzyl-\beta-D-glucopyranosyl-2-(2',3',4'-tetra-{\it O}-benzyl-\beta-D-glucopyranosyl-2-(2',3',4'-tetra-{\it O}-benzyl-2-(2',3',4'-tetra-{\it O}-benzyl-2-(2',3',4'-tetra-{\it O}-benzyl-2-(2',3',4'-tetra-{\it O}-benzyl-2-(2',3'-tetra-{\it O}-benzyl-2-(2'$

pyrimidine (8b)

Prepared from compound 1^{1, 2} (400 mg, 0.66 mmol) and the α,β-unsaturated β-chloroketone (137 mg, 0.80 mmol) obtained from 1,1,1-trifluoropentane-2,4-dione⁹ according to general procedure IV. Purified by column chromatography (5 : 1 hexane-EtOAc) to yield 309 mg (68%) pale yellow syrup. $R_f = 0.43$ (3 : 1 hexane-EtOAc); $[\alpha]_D = +1$ (c 0.30, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37-6.83 (21H, m, aromatics, Py-H-5), 4.96, 4.93 (2 × 1H, 2 d, *J* = 11.1 Hz, Ph*CH*₂), 4.85, 4.59 (2 × 1H, 2 d, *J* = 10.7 Hz, Ph*CH*₂), 4.71, 4.31 (2 × 1H, 2 d, *J* = 11.4 Hz, Ph*CH*₂), 4.59, 4.50 (2 × 1H, 2 d, *J* = 12.2 Hz, Ph*CH*₂), 4.59 (1H, d, *J* = 9.1 Hz, H-1'), 4.23 (1H, pseudo t, *J* = 9.4, 9.1 Hz, H-2'), 3.90 (1H, pseudo t, *J* = 9.4, 9.0 Hz, H-3'), 3.81 (1H, pseudo t, *J* = 9.5, 9.0 Hz, H-4'), 3.78-3.72 (2H, m, H-6'a, H-6'b), 3.70 (1H, ddd, *J* = 9.5, 4.0, 100 Hz, H-4'), 3.78-3.72 (2H, m, H-6'a, H-6'b), 3.70 (1H, ddd, *J* = 9.5, 4.0)

2.2 Hz, H-5'), 2.56 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.7, 166.8 (Py-C-2, Py-C-4), 155.4 (q, ²*J*_{C-F} = 36.3 Hz, Py-C-6), 138.7, 138.2, 138.2, 138.1 (aromatics, C_q), 128.6-127.5 (aromatics), 120.7 (q, ¹*J*_{C-F} = 275.3 Hz, CF₃), 115.9 (q, ³*J*_{C-F} = 2.1 Hz, Py-C-5), 87.3, 82.6, 80.8, 79.9, 78.2 (C-1' – C-5'), 75.7, 75.3, 74.7, 73.6 (4 × Ph*C*H₂), 68.9 (C-6'), 24.7 (CH₃). ESI-MS positive mode (m/z): calcd for C₄₀H₄₀F₃N₂O₅⁺ [M+H]⁺: 685.3. Found: 685.4.

4-Methyl-6-phenyl-2-(2',3',4',6'-tetra-*O*-benzyl-β-D-glucopyranosyl)-pyrimidine (8c)

Prepared from compound **1** (400 mg, 0.66 mmol) and the α,β-unsaturated β-chloroketone (144 mg, 0.80 mmol) obtained from 1-phenylbutane-1,3-dione¹⁰ according to general procedure IV. Purified by column chromatography (3 : 1 hexane-EtOAc) to yield 340 mg (74 %) pale yellow syrup. $R_f = 0.47$ (1 : 1 hexane-EtOAc); $[\alpha]_D = +19$ (c 0.24, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.10 (2H, d, J = 7.0 Hz, aromatics), 7.48-7.44 (4H, m, aromatics, Py-H-5), 7.38-6.81 (20H, m, aromatics), 4.98, 4.95 (2 × 1H, 2 d, J = 11.1 Hz, Ph*CH*₂), 4.88, 4.62 (2 × 1H, 2 d, J = 10.7 Hz, Ph*CH*₂), 4.62, 4.26 (2 × 1H, 2 d, J = 11.1 Hz, Ph*CH*₂), 4.65, 4.50 (2 × 1H, 2 d, J = 12.1 Hz, Ph*CH*₂), 4.62 (1H, d, J = 9.0 Hz, H-1'), 4.36 (1H, pseudo t, J = 9.4, 9.0 Hz, H-2'), 3.93 (1H, pseudo t, J = 9.4, 9.0 Hz, H-3'), 3.88 (1H, pseudo t, J = 9.5, 9.0 Hz, H-4'), 3.81 (1H, dd, J = 11.1, 4.2 Hz, H-6'a), 3.77 (1H, dd, J = 11.1, 2.0 Hz, H-6'b), 3.73 (1H, ddd, J = 9.5, 4.2, 2.0 Hz, H-5'), 2.54 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 168.0, 165.9, 164.0 (Py-C-2, Py-C-4, Py-C-6), 138.9, 138.3, 138.2 (2), 136.7 (aromatics, C_q), 130.9, 128.9, 128.5-127.4 (aromatics), 115.5 (Py-C-5), 87.2, 83.4, 81.4, 79.8, 78.3 (C-1' - C-5'), 75.6, 75.2, 74.7, 73.5 (4 × Ph*CH*₂), 69.0 (C-6'), 24.4 (CH₃). ESI-MS positive mode (m/z): calcd for C₄₅H₄₅N₂O₅⁺ [M+H]⁺: 693.3. Found: 693.4. 4-Phenyl-2-(2',3',4',6'-tetra-*O*-benzyl-β-D-glucopyranosyl)-6-trifluoromethyl-pyrimidine (8d)

Prepared from compound $1^{1, 2}$ (400 mg, 0.66 mmol) and the α,β -unsaturated β -chloroketone (187 mg, 0.80 mmol) obtained from 4,4,4-trifluoro-1-phenylbutane-1,3-dione⁹ according to general procedure IV. Purified by column chromatography (7:1 hexane-EtOAc) to yield 356 mg (72 %) colourless syrup. $R_f = 0.38$ (5 : 1 hexane-EtOAc); $[\alpha]_D = +27$ (c 0.29, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.12 (2H, d, J = 7.0 Hz, aromatics), 7.85 (1H, s, Py-H-5), 7.56-7.48 (3H, m, aromatics) 7.38-6.79 (20H, m, aromatics), 4.98, 4.96 (2×1 H, 2 d, J = 11.1Hz, Ph*CH*₂), 4.89, 4.65 (2 × 1H, 2 d, *J* = 10.7 Hz, Ph*CH*₂), 4.73, 4.31 (2 × 1H, 2 d, *J* = 11.3 Hz, Ph*CH*₂), 4.64, 4.51 (2×1 H, 2 d, J = 12.1 Hz, Ph*CH*₂), 4.71 (1H, d, J = 9.1 Hz, H-1'), 4.36 (1H, pseudo t, J = 9.4, 9.1 Hz, H-2'), 3.95 (1H, pseudo t, J = 9.4, 9.0 Hz, H-3'), 3.88 (1H, pseudo t, J = 9.6, 9.0 Hz, H-4'), 3.82 (1H, dd, J = 11.2, 4.3 Hz, H-6'a), 3.77 (1H, dd, J = 11.2, 1.9 Hz, H-6'b), 3.73 (1H, ddd, J = 9.6, 4.3, 1.9 Hz, H-5'); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 167.4, 166.9 (Py-C-2, Py-C-4), 156.5 (q, ${}^{2}J_{C-F} = 35.9$ Hz, Py-C-6), 138.7, 138.3, 138.2, 138.1, 135.4 (aromatic, C_q), 132.2, 129.2, 128.6-127.5 (aromatics), 120.8 (q, ${}^{1}J_{C-F} = 275.1$ Hz, CF₃), 111.6 (q, ${}^{3}J_{C-F} = 1.9$ Hz, Py-C-5), 87.2, 82.7, 81.2, 80.0, 78.3 (C-1' - C-5'), 75.8, 75.3, 74.9, 73.6 (4) × Ph*C*H₂), 69.0 (C-6'). ESI-MS positive mode (m/z): calcd for $C_{45}H_{43}F_3N_2O_5^+$ [M+H]⁺: 747.3. Found: 747.4.

(4*R*,6*R*)- and (4*S*,6*S*)-2-(β-D-Glucopyranosyl)-6-methyl-4-phenyl-1,4,5,6-

tetrahydropyrimidines (9c)

Prepared from compound **8c** (300 mg, 0.43 mmol) according to general procedure V. Purified by column chromatography (5 : 1 CHCl₃-MeOH) to yield 120 mg (82 %) colourless syrup. $R_f = 0.46$ (3 : 1 CHCl₃-MeOH). NMR assignment of the major component: ¹H NMR (400 MHz, CD₃OD) δ (ppm): 7.46-7.35 (5H, m, aromatics), 4.79 (1H, dd, J = 11.2, 3.8 Hz, Py-H-4), 4.12 (1H, d, J = 9.0 Hz, H-1'), 3.95-3.81 (3H, m, Py-H-6, H-6'a, H-6'b), 3.54-3.39 (4H, m, H-2', H-3', H-4', H-5'), 2.36 (1H, dt, J = 13.4, 3.8 Hz, Py-H-5_{eq}), 1.72 (1H, dt, J = 13.4, 11.2 Hz, Py-H-5_{ax}), 1.39 (3H, d, J = 6.6 Hz, CH₃); ¹³C NMR (90 MHz, CD₃OD) δ (ppm): 162.7 (Py-C-2), 140.1, 130.0 (2), 129.7, 127.9 (2) (Ph), 81.7, 78.8, 77.7, 73.9, 69.8 (C-1' – C-5'), 61.3 (C-6'), 56.0, 47.7 (Py-C-4, Py-C-6), 38.1 (Py-C-5), 19.7 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₇H₂₅N₂O₅⁺ [M+H]⁺: 337.18. Found:337.17.

(4*R*,6*S*)- and (4*S*,6*R*)-2-(β-D-Glucopyranosyl)-4-phenyl-6-trifluoromethyl-1,4,5,6tetrahydropyrimidines (9d)

Prepared from compound **8d** (200 mg, 0.27 mmol) according to general procedure V. Purified by column chromatography (5 : 1 CHCl₃-MeOH) to yield 83 mg (79 %) colourless syrup. $R_f = 0.51$ (3 : 1 CHCl₃-MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 7.41-7.29 (2 × 5H, m, aromatics), 4.62-4.57 (2 × 1H, 2 dd, J = 11.3, 3.8 Hz in each, 2 × Py-H-4), 4.29-4.17 (2H, m, 2 × Py-H-6), 3.91-3.79 (4H, m, 2 × H-1', 2 × H-6'a), 3.66, 3.63 (2 × 1H, 2 dd, J = 11.7, 4.9 Hz in each, 2 × H-6'b), 3.50, 3.48 (2 × 1H, 2 pseudo t, J = 9.4, 9.2 Hz in each, 2 × H-2'), 3.42, 3.41

 $(2 \times 1H, 2 \text{ pseudo t}, J = 9.4, 9.2 \text{ Hz in each}, 2 \times H-3')$, 3.36-3.26 (4H, m, 2 × H-4', 2 × H-5'), 2.32-2.25 (2 × 1H, 2 dt, J = 13.0, 3.8 Hz in each, 2 × Py-H-5_{eq}), 1.81-1.67 (2 × 1H, 2 dt, J = 13.0, 11.3 Hz in each, 2 × Py-H-5_{ax}); ¹³C NMR (100 MHz, CD₃OD) δ (ppm): ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 162.0, 161.8 (2 × Py-C-2), 142.1, 142.0, 130.0 (2), 129.9 (2), 129.5, 129.4, 127.8 (4) (aromatics), 127.0, 126.9 (2 q, ¹ $J_{C-F} = 278.0$ Hz in each, 2 × CF₃), 82.0, 81.9, 78.9, 78.7, 78.4, 77.9, 74.4, 74.1, 70.8, 70.7 (2 × C-1' – C-5'), 62.4, 62.2 (2 × C-6'), 56.2, 56.1 (2 q, ² $J_{C-F} = 30.6$ Hz in each, 2 × Py-C-6), 54.2, 54.0 (2 × Py-C-4), 30.8, 30.6 (2 × Py-C-5). ESI-MS positive mode (m/z): calcd for C₁₇H₂₂F₃N₂O₅⁺ [M+H]⁺: 391.2. Found: 391.3.

2-(β-D-Glucopyranosyl)-4,6-dimethylpyrimidine (10a)

A) From compound **2** (100 mg, 0.41 mmol) and the α,β-unsaturated β-chloroketone (58 mg, 0.50 mmol) obtained from pentane-2,4-dione⁸ according to general procedure IV. Purified by column chromatography (9 : 1 CHCl₃-MeOH) to yield 69 mg (62 %) pale yellow syrup.

B) From compound **8a** (200 mg, 0.32 mmol) according to general procedure II. Reaction time: 3 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 68 mg (79 %) colourless syrup. $R_f = 0.34$ (5 : 1 CHCl₃-MeOH); $[\alpha]_D = -62$ (c 0.09, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 7.23 (1H, s, Py-H-5), 4.34 (1H, d, J = 9.5 Hz, H-1'), 3.87 (1H, dd, J = 12.1, 2.2 Hz, H-6'a), 3.75 (1H, pseudo t, J = 9.5, 9.2 Hz, H-2'), 3.72 (1H, dd, J = 12.1, 5.2 Hz, H-6'b), 3.55 (1H, pseudo t, J = 9.4, 9.2 Hz, H-3'), 3.51 (1H, pseudo t, J = 9.4, 9.4 Hz, H-4'), 3.44 (1H, ddd, J = 9.4, 5.2, 2.2 Hz, H-5'), 2.51 (6H, s, 2 × CH₃); ¹³C NMR (100 MHz, CD₃OD) δ (ppm): 168.9 (2), 167.1 (Py-C-2, Py-C-4, Py-C-6), 120.9 (Py-C-5), 83.6, 82.4, 79.4, 74.7, 71.2 (C-1' - C-5'), 62.8 (C-6'), 23.6 (2) (2 × CH₃). ESI-MS positive mode (m/z): calcd for C₁₂H₁₉N₂O₅⁺ [M+H]⁺: 271.1. Found: 271.2.

2-(β-D-Glucopyranosyl)-4-methyl-6-trifluoromethyl-pyrimidine (10b)

A) From compound **2** (100 mg, 0.41 mmol) and the α,β-unsaturated β-chloroketone (85 mg, 0.50 mmol) obtained from 1,1,1-trifluoropentane-2,4-dione⁹ according to general procedure IV. Purified by column chromatography (9 : 1 CHCl₃-MeOH) to yield 84 mg (63 %) pale yellow syrup.

B) From compound **8b** (200 mg, 0.29 mmol) according to general procedure II. Reaction time: 6 h. Purified by column chromatography (5 : 1 EtOAc-MeOH) to yield 87 mg (92 %) colourless syrup. $R_f = 0.36$ (5 : 1 CHCl₃-MeOH); $[\alpha]_D = -32$ (c 0.19, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 7.76 (1H, s, Py-H-5), 4.47 (1H, d, J = 9.7 Hz, H-1'), 3.89 (1H, pseudo t, J =9.7, 9.2 Hz, H-2'), 3.88 (1H, dd, J = 12.1, 2.0 Hz, H-6'a), 3.71 (1H, dd, J = 12.1, 5.0 Hz, H-6'b), 3.56 (1H, pseudo t, J = 9.4, 9.2 Hz, H-3'), 3.52-3.47 (2H, m, H-4', H-5'), 2.68 (3H, s, CH₃); ¹³C NMR (90 MHz, CD₃OD) δ (ppm): 172.9, 168.4 (Py-C-2, Py-C-4), 156.4 (q, ² $_{JC-F} =$ 35.7 Hz, Py-C-6), 125.2 (q, ¹ $_{JC-F} = 274.9$ Hz, CF₃), 117.3 (q, ³ $_{JC-F} = 2.4$ Hz, Py-C-5), 84.2, 82.7, 79.4, 74.4, 71.4 (C-1' – C-5'), 62.9 (C-6'), 24.3 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₂H₁₆F₃N₂O₅⁺ [M+H]⁺: 325.10. Found: 325.08.

2-(β-D-Glucopyranosyl)-4-methyl-6-phenylpyrimidine (10c)

A) From compound **2** (100 mg, 0.41 mmol) and the α , β -unsaturated β -chloroketone (89 mg, 0.50 mmol) obtained from 1-phenylbutane-1,3-dione¹⁰ according to general procedure IV. The crude product was purified by column chromatography (19 : 1 CHCl₃-MeOH) to yield 95 mg

(69 %) pale yellow syrup. $R_f = 0.50$ (5 : 1 CHCl₃-MeOH); $[\alpha]_D = -42$ (c 0.12, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 8.28-8.26 (2H, m, Ph), 7.90 (1H, s, Py-H-5), 7.62-7.60 (3H, m, Ph), 4.46 (1H, d, J = 9.5 Hz, H-1'), 4.04 (1H, pseudo t, J = 9.5, 9.2 Hz, H-2'), 3.88 (1H, dd, J = 12.1, 1.9 Hz, H-6'a), 3.69 (1H, dd, J = 12.1, 5.0 Hz, H-6'b), 3.57 (1H, pseudo t, J = 9.4, 9.2 Hz, H-3'), 3.51-3.45 (2H, m, H-4', H-5'), 2.66 (3H, s, CH₃); ¹³C NMR (100 MHz, CD₃OD + 1 drop of DMSO-d₆) δ (ppm): 169.6, 167.6, 165.0 (Py-C-2, Py-C-4, Py-C-6), 137.9, 132.3, 130.2 (2), 128.6 (2) (Ph), 116.8 (Py-C-5), 84.8, 82.9, 79.6, 74.2, 71.6 (C-1' – C-5'), 62.9 (C-6'), 24.4 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₇H₂₁N₂O₅⁺ [M+H]⁺: 333.14. Found: 333.17. **B**) From compound **8c** (200 mg, 0.29 mmol) according to general procedure II. Reaction time: 6 h. Purification by column chromatography (5 : 1 EtOAc-MeOH, then 1 : 1 EtOAc-MeOH) yielded the title compound **10c** as the first (35 mg, 36 %) and compound **9c** as the second fraction (26 mg, 27 %). Compound characterization data for both products were identical with those described above.

C) 2,3,4,6-Tetra-*O*-benzoyl- β -D-glucopyranosyl cyanide³ (13, 1.00 g, 1.65 mmol) was converted into compounds 2 and 12 via imidate 11 in a two-step procedure as described for compound 2 in method **B**. Without column chromatographic purification the crude mixture of 2 and 12 was dissolved in anhydrous DMF (10 mL), K₂CO₃ (0.91 g, 6.61 mmol) and activated molecular sieves (4 Å) were added. The reaction mixture was then cooled to 0 °C and the freshly prepared α , β -unsaturated β -chloroketone (358 mg, 1.98 mmol) obtained from 1-phenylbutane-1,3-dione¹⁰ was added. The reaction mixture was allowed to warm up to rt and the stirring was continued. After completion of the reaction (1 d) monitored by TLC (7 : 3 CHCl₃-MeOH) the inorganic precipitates were filtered off, washed with MeOH, and the solvent was evaporated under reduced pressure. Column chromatographic purification of the residual oil gave compound 14c as the first (20 mg, 3.9 % for three steps) and the title compound 10c as the second fraction (163 mg, 30 % for three steps).

2-(β-D-Glucopyranosyl)-4-phenyl-6-trifluoromethyl-pyrimidine (10d)

A) From compound **2** (100 mg, 0.41 mmol) and the α,β-unsaturated β-chloroketone (116 mg, 0.50 mmol) obtained from 4,4,4-trifluoro-1-phenylbutane-1,3-dione⁹ according to general procedure IV. Purified by column chromatography (19 : 1 CHCl₃-MeOH) to yield 120 mg (75%) pale yellow syrup. $R_f = 0.56$ (5 : 1 CHCl₃-MeOH); $[\alpha]_D = -33$ (c 0.15, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 8.27 (2H, d, J = 7.5 Hz, Ph), 8.25 (1H, s, Py-H-5), 7.60-7.52 (3H, m, Ph), 4.60 (1H, d, J = 9.7 Hz, H-1'), 4.10 (1H, pseudo t, J = 9.7, 9.3 Hz, H-2'), 3.93 (1H, dd, J = 12.1, 1.9 Hz, H-6'a), 3.75 (1H, dd, J = 12.1, 5.1 Hz, H-6'b), 3.63 (1H, pseudo t, J = 9.4, 9.3 Hz, H-3'), 3.58-3.54 (2H, m, H-4', H-5'); ¹³C NMR (100 MHz, CD₃OD) δ (ppm): 168.8, 168.7 (Py-C-2, Py-C-4), 157.5 (q, ² $_{JC-F} = 35.7$ Hz, Py-C-6), 136.6, 133.2, 130.2 (2), 128.8 (2) (Ph), 122.2 (q, ¹ $_{JC-F} = 274.6$ Hz, CF₃), 113.1 (q, ³ $_{JC-F} = 2.0$ Hz, Py-C-5), 84.5, 82.8, 79.5, 74.3, 71.6 (C-1' – C-5'), 62.9 (C-6'). ESI-MS positive mode (m/z): calcd for C₁₇H₁₈F₃N₂O₅⁺ [M+H]⁺: 387.12. Found: 387.14.

B) From compound **8d** (200 mg, 0.27 mmol) according to general procedure II. Reaction time: 6 h. Purification by column chromatography (5 : 1 EtOAc-MeOH, then 1 : 1 EtOAc-MeOH) yielded the title compound **10d** as the first (20 mg, 19 %) and compound **9d** as the second fraction (45 mg, 43 %). Compound characterization data for both products were identical with those described above.

2-(2'-Deoxy-D-arabino-hex-1'-enopyranosyl)-4-methyl-6-phenylpyrimidine (14c)

The title compound was obtained as by-product upon formation of **10c** starting from glucosyl cyanide **13** (see synthetic details of compound **10c**, method **C**). $R_f = 0.67$ (4 : 1 CHCl₃-MeOH); $[\alpha]_D = +138$ (c 0.12, MeOH); ¹H NMR (400 MHz, CD₃OD) δ (ppm): 8.17-8.14 (2H, m, Ph), 7.73 (1H, s, Py-H-5), 7.53-7.50 (3H, m, Ph), 6.43 (1H, d, J = 2.6 Hz, H-2'), 4.39 (1H, dd, J = 7.5, 2.6 Hz, H-3'), 4.06 (1H, dd, J = 12.1, 1.7 Hz, H-6'a), 3.98 (1H, ddd, J = 9.8, 6.2, 1.7 Hz, H-5'), 3.92 (1H, dd, J = 12.1, 6.2 Hz, H-6'b), 3.66 (1H, dd, J = 9.8, 7.5 Hz, H-4'), 2.60 (3H, s, CH₃); ¹³C NMR (100 MHz, CD₃OD) δ (ppm): 169.2, 165.4, 161.1 (Py-C-2, Py-C-4, Py-C-6), 150.6 (C-1'), 137.7, 132.3, 130.0 (2), 128.4 (2) (Ph), 116.4 (Py-C-5), 109.2 (C-2'), 81.7, 71.3, 70.6 (C-3' - C-5'), 62.7 (C-6'), 23.8 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₇H₁₉N₂O₄⁺ [M+H]⁺: 315.13. Found: 315.17.

2-(β-D-Galactopyranosyl)-6-methylpyrimidin-4(3H)-one (19)

Prepared from cyanide **15**⁴ (1.00 g, 2.80 mmol) according to general procedure VI. Purified by column chromatography (4 : 1 CHCl₃-MeOH) to yield 537 mg (70 % for three steps) white amorphous solid. $R_f = 0.33$ (7 : 3 CHCl₃-MeOH); $[\alpha]_D = +27$ (c 0.28, H₂O); ¹H NMR (360 MHz, CD₃OD) δ (ppm): 6.22 (1H, s, Py-H-5), 4.10 (1H, d, J = 9.6 Hz, H-1'), 3.93 (1H, d, J = 3.3 Hz, H-4'), 3.83 (1H, pseudo t, J = 9.6, 9.2 Hz, H-2'), 3.81-3.67 (3H, m, H-5', H-6'a, H-6'b), 3.59 (1H, dd, J = 9.2, 3.2 Hz, H-3'), 2.30 (3H, s, CH₃); ¹³C NMR (90 MHz, DMSO-d₆) δ (ppm): 163.5, 162.9, 158.8 (Py-C-2, Py-C-4, Py-C-6), 111.5 (Py-C-5), 80.3, 80.1, 74.3, 69.2,

69.1 (C-1' – C-5'), 60.7 (C-6'), 23.2 (CH₃). ESI-MS positive mode (m/z): calcd for $C_{11}H_{17}N_2O_6^+$ [M+H]⁺: 273.1. Found: 273.2.

2-(β-D-Xylopyranosyl)-6-methylpyrimidin-4(3*H*)-one (20)

Prepared from cyanide **16**⁵ (1.00 g, 2.12 mmol) according to general procedure VI. Purified by column chromatography (4 : 1 CHCl₃-MeOH) to yield 141 mg (27 % for three steps) white amorphous solid. $R_f = 0.49$ (7 : 3 CHCl₃-MeOH); $[\alpha]_D = -14$ (c 0.25, H₂O); ¹H NMR (360 MHz, CD₃OD) δ (ppm): 6.19 (1H, s, Py-H-5), 4.01 (1H, d, J = 9.6 Hz, H-1'), 4.00 (1H, dd, J = 11.1, 5.5 Hz, H-5'_{eq}), 3.64-3.57 (2H, m, H-4', H-2' or H-3'), 3.39 (1H, pseudo t, J = 9.1, 9.0 Hz, H-2' or H-3'), 3.29 (1H, dd, J = 11.1, 10.0 Hz, H-5'_{ax}), 2.27 (3H, s, CH₃); ¹³C NMR (90 MHz, CD₃OD) δ (ppm): 167.6, 165.0, 161.1 (Py-C-2, Py-C-4, Py-C-6), 112.1 (Py-C-5), 81.3, 79.2, 73.9, 71.3, 70.8 (C-1' - C-5'), 22.8 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₀H₁₅N₂O₅⁺ [M+H]⁺: 243.10. Found: 243.17.

2-(α-D-Arabinopyranosyl)-6-methylpyrimidin-4(3*H*)-one (21)

Prepared from cyanide **17**⁶ (1.00 g, 3.51 mmol) according to general procedure VI. Purified by crystallization from MeOH to yield 361 mg (43 % for three steps) white solid. $R_f = 0.46$ (7 : 3 CHCl₃-MeOH); Mp: 153-154 °C. [α]_D = -3 (c 0.20, H₂O); ¹H NMR (360 MHz, CD₃OD) δ (ppm): 6.23 (1H, s, Py-H-5), 4.01 (1H, d, *J* = 9.6 Hz, H-1'), 4.00 (1H, dd, *J* = 12.5, 2.3 Hz, H-5'_{eq}), 3.93-3.92 (1H, m, H-4'), 3.81 (1H, pseudo t, *J* = 9.6, 9.2 Hz, H-2'), 3.72 (1H, dd, *J* = 12.5, 5.2 Hz, H-2) = 12.5, 5.2 Hz, H-2 = 12.5, 5.2 Hz, H-

1.1 Hz, H-5'_{ax}), 3.59 (1H, dd, J = 9.2, 3.3 Hz, H-3'), 2.30 (3H, s, CH₃); ¹³C NMR (90 MHz, DMSO-d₆) δ (ppm): 164.0, 162.3, 158.2 (Py-C-2, Py-C-4, Py-C-6), 111.7 (Py-C-5), 80.9, 73.7, 69.1, 68.9 (C-1' - C-4'), 70.9 (C-5'), 23.3 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₀H₁₅N₂O₅⁺ [M+H]⁺: 243.10. Found: 243.17.

2-(2'-Deoxy-D-*lyxo*-hex-1'-enopyranosyl)-6-methylpyrimidin-4(3*H*)-one (22)

Prepared from cyanide **18**⁷ (500 mg, 1.68 mmol) according to general procedure VI. The product which precipitated from the reaction mixture upon neutralization with glacial AcOH was filtered and washed with MeOH to yield 403 mg (94 % for three steps) white solid. $R_f = 0.62$ (7 : 3 CHCl₃-MeOH); Mp: decomposition above 200 °C, no melting till 360 °C. $[\alpha]_D = +68$ (c 0.14, DMSO); ¹H NMR (360 MHz, DMSO-d₆) δ (ppm): 6.10 (1H, s, Py-H-5), 5.94 (1H, broad signal, H-2'), 5.05-4.71 (broad signals, OH), 4.40 (1H, broad signal, H-3' or H-4'), 4.01 (1H, dd, $J_{5',6'a} = 8.5$), 3.87 (1H, dd, $J_{6'a,6'b} = 12.1$ Hz, H-6'a), 3.71 (1H, broad d, $J_{3',4'} = 4$ Hz, H-3' or H-4'), 3.51 (1H, dd, $J_{5',6'b} = 2.3$ Hz, H-6'b), 2.19 (3H, s, CH₃). ¹³C NMR (90 MHz, DMSO-d₆) δ (ppm): 163.9, 162.0, 151.2 (Py-C-2, Py-C-4, Py-C-6), 143.4 (C-1'), 110.9 (Py-C-5), 109.0 (C-2'), 80.1, 64.6, 64.0 (C-3' - C-5'), 61.7 (C-6'), 23.4 (CH₃). ESI-MS positive mode (m/z): calcd for C₁₁H₁₅N₂O₅⁺ [M+H]⁺: 255.10. Found: 255.17.

2. Enzyme assays

Glycogen phoshorylase *b* was obtained from rabbit skeletal muscle by a slight modification (application of 2-mercaptoethanol instead of L-cysteine, and recrystallization at least three times before use) of the purification protocol developed by Fischer and Krebs.¹¹ The kinetic measurements were carried out in the direction of glycogen synthesis as described earlier¹² with maximal inhibitor concentrations of 625 μ M.

The glycosidase enzymes used were purchased from Sigma-Aldrich. Typically, (in the case of glycosidases) a 10 μ L aliquot for each of different inhibitor stock solutions was mixed with 370 μ L of the buffer and 20 μ L enzyme stock solution in a plastic UV cuvette. After equilibration at 37 °C for 5 min, a 100 μ L aliquot of the substrate stock solution was added. The resulting solutions were thoroughly mixed, and the change in absorbance was followed at 400 nm over 240 s in 2 s intervals using the Parallel Kinetics Analysis program of a JASCO V550 (JASCO Tokyo, Japan) spectrophotometer. Progress curves were plotted and fitted to a straight line. Δ A/min values, proportional to initial rate, were considered to be enzyme activities. In a control experiment, the aliquot of the inhibitor solution was replaced by the same amount of buffer. The initial rate data for the enzymatic substrate hydrolysis in presence and absence of inhibitor were transferred into percentages of overall inhibition, and plotted against the inhibitor concentration in logarithmic scale for IC₅₀ determination.

Specific assay conditions for each glycosidase enzyme:

 β -Glucosidase from almonds (Sigma-Aldrich): 2.5 mM PNP- β -Glc substrate in citratephosphate buffer pH 5.2 using 0.25 mg/mL of enzyme.

α-Glucosidase from *Saccharomyces cerevisiae* (Sigma-Aldrich): 0.5 mM PNP-α-Glc in glycerophosphate buffer pH 6.9 using 0.02 mg/mL of enzyme.

Bovine liver β -galactosidase (Sigma-Aldrich): 1 mM PNP- β -Gal in citrate-phosphate buffer pH 7.3 using 0.12 mg/mL of enzyme.

28

3. References

- 1. Szennyes, E.; Bokor, É.; Batta, G.; Docsa, T.; Gergely, P.; Somsák, L. Improved preparation of 4(5)-aryl-2-(β-D-glucopyranosyl)-imidazoles, the most efficient glucose analogue inhibitors of glycogen phosphorylase. *RSC Advances* **2016**, 6, 94787-94794.
- Szennyes, E.; Bokor, É.; Kiss, A.; Somsák, L.; Pascal, Y. Preparation of 2,6-anhydro-3,4,5,7-tetra-O-benzyl-D-glycero-D-gulo-heptonimidamide. In *Carbohydrate Chemistry: Proven Synthetic Methods*, Vogel, C.; Murphy, P. V., Eds. CRC Press: Boca Raton, 2017; Vol. 4, pp 323-332.
- 3. Somsák, L.; Nagy, V. A new, scalable preparation of a glucopyranosylidene-spirothiohydantoin: one of the best inhibitors of glycogen phosphorylases. *Tetrahedron: Asymm.* **2000**, 11, 1719-1727. Corrigendum 2247.
- 4. Myers, R. W.; Lee, Y. C. Synthesis and characterization of some anomeric pairs of per-*O*-acetylated aldohexopyranosyl cyanides (per-*O*-acetylated 2,6-anhydroheptononitriles). On the reaction of per-*O*-acetylaldohexopyranosyl bromides with mercuric cyanide in nitromethane. *Carbohydr. Res.* **1984**, 132, 61-85.
- 5. Dong, L.; Li, L.; Ma, L.; Zhang, L. Synthesis of derivatives of 3-β-D-xylopyranosyl-1,2,4-oxadiazoles. *Chin. Chem. Lett.* **1992**, 3, 597-600.
- 6. De Las Heras, F. G.; Fernández-Resa, P. Synthesis of Ribosyl and Arabinosyl Cyanides by Reaction of 1-*O*-Acyl Sugars with Trimethylsilyl Cyanide. *J. Chem. Soc. Perkin. Trans. 1* **1982**, 903-907.
- 7. Somsák, L.; Bajza, I.; Batta, G. Preparation of 2,6-Anhydro-3-deoxyhept-(or hex)2enononitriles (1-Cyanoglycals) from 1-Bromo-D-glycosyl Cyanides with Zinc under Aprotic Conditions. *Liebigs Ann.* **1990**, 1265-1268.
- 8. Dreger, A.; Nieger, M.; Drafz, M.; Schmidt, A. Synthesis of a Pyrazol-3-ylidene Palladium Complex, Pyrazolium Salts and Mesomeric Betaines of Pyrazole as N-Heterocyclic Carbene Precursors. *Z. Naturforsch.* (*B*) **2012**, 67, 359-366.
- Iaroshenko, V. O.; Dudkin, S.; Sosnovskikh, V. Y.; Villinger, A.; Langer, P. (β-D-Ribofuranosyl)formamidine in the Design and Synthesis of 2-(β-D-Ribofuranosyl)pyrimidines, Including RF-Containing Derivatives. *Eur. J. Org. Chem.* 2013, 2013, 3166-3173.
- 10. Alvernhe, G.; Bensadat, A.; Ghobsi, A.; Laurent, A.; Laurent, E. Regioselective synthesis of (Trifluoromethyl)-β-chloroenones. *J. Fluorine Chem.* **1997**, 81, 169-172.
- 11. Fischer, E. H.; Krebs, E. G. Muscle Phosphorylase b. Meth. Enzymol. 1962, 5, 369-372.
- Oikonomakos, N. G.; Skamnaki, V. T.; Ősz, E.; Szilágyi, L.; Somsák, L.; Docsa, T.; Tóth, B.; Gergely, P. Kinetic and crystallographic studies of glucopyranosylidene spirothiohydantoin binding to glycogen phosphorylase b. *Bioorg. Med. Chem.* 2002, 10, 261-268.

4. Copies of NMR and IR spectra of the new compounds

^{210 200} 120 110 100 f1 (ppm)

120 110 100 f1 (ppm)

210 200 120 110 100 f1 (ppm)

No.	Position	Intensity	No.	Position	Intensity
1	3444.24	91.0847	2	3086.51	79.743
3	3062.41	75.0976	4	3030.59	65.6076
5	2908.13	66.4035	6	2857.02	65.3503
7	1948.72	95.5751	8	1875.43	96.021
9	1806.97	95.6562	10	1745.26	92.2157
11	1666.2	12.5773	12	1609.31	54.2417
13	1556.27	80.7978	14	1496.49	76.1568
15	1453.1	66.3498	16	1396.21	83.3999
17	1360.53	73.0875	18	1327.75	87.8492
19	1280.5	85.4979	20	1256.4	89.046
21	1213.97	78.6479	22	1159.97	64.3171
23	1089.58	29.3481	24	1058.73	36.7998
25	1027.87	59.2854	26	998.946	69.1992
27	914.093	79.1321	28	796.457	93.8972
29	751.138	53.261	30	740.531	55.4211
31	697.141	36.3466	32	646.036	85.1934
33	619.038	88.9628	34	600.717	86.2938
35	573.719	93.2866	36	539.007	90.3808
37	458.975	89.041	38	419.442	90.7933

_____2.17

^{210 200} 120 110 100 f1 (ppm)

8.11 8.11 8.11 7.7.7 7.13 8.11 7.7.7 7.13 6.92 6.92 6.73

120 110 f1 (ppm)

1.86 1.84 1.82 1.80 1.78 1.76 1.74 1.72 1.70 1.68 1.66 1.64 1.62 f1 (ppm)

220 210 200 120 110 f1 (ppm)

