Supporting Information

Vacuum dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement : performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors

Dangjia Chen,^a Keyi Dong,^b Hongyi Gao,^{*a} Tao Zhuang,^a Xiubing Huang^a and Ge Wang^{*a}

^a Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.

^b Beijing National Day School, Beijing 100039, PR China.

*Corresponding author at: No. 30, Xueyuan Road, Haidian District, Beijing City, PR China.

*E-mail: gewang@mater.ustb.edu.cn. (G. Wang)

*E-mail: hygao2009@163.com (H. Y. Gao)

sample	APDEMS	TPAL	TMOS	TEOS	MTMS	PTMS	HTMS	EtOH	Water
	(mmol)	(ml)	(ml)						
DT	12.81	6.39	0	0	0	0	0	18	2
DT-Q-M	4.27	2.13	8.54	0	0	0	0	18	2
DT-Q-E	4.27	2.13	0	8.54	0	0	0	18	2
DT-T-M	4.27	2.13	0	0	8.54	0	0	18	2
DT-T-P	4.27	2.13	0	0	0	8.54	0	18	2
DT-T-H	4.27	2.13	0	0	0	0	8.54	18	2

Table S1. The detailed formulas of the products.

Figure S1. DT-Q-M in drying process (a), DT-T-H in sol-gel process (b).

Figure S2. The FT-IR spectrum of the BMSQ precursor, in the synthesis of the aerogel, the mixture of ethanol, TPAL and ATDEMS was measured by the FT-IR before water was added, the generation of the imine and the disappearance of the aldehyde group means the precursor was synthesized.

Figure S3. The FT-IR spectra of the start monomers.

Figure S4. The Solid-state ¹³C NMR spectra of the aerogels.

Figure S5. The ¹³C NMR spectra of the start monomers.

Figure S6. The SEM images of the aerogels with 40000 times magnification.

Figure S7. Photos of the sol-gel process of the samples in every 2 hours.

Figure S8. Pore size distribution of the aerogels, a) DT, b) DT-Q-E, c) DT-T-M, d) DT-T-P.

Figure S9. The optical images of aerogels, a) DT-T-3M, b) DT-Q-3E.

To improve the specific surface areas, the content of MTMS and TEOS was increased by 3 times as the content in DT-T-M and DT-Q-E individually, the two kind aerogels were named DT-T-3M and DT-Q-3E. DT-T-3M and DT-Q-3E both suffered larger shrinkage and even fragmentation, the specific surface area of DT-T-3M and DT-Q-3E are 69.88 and 265.41 m²/g, and the shrinkage of DT-T-3M and DT-Q-3E are 33.7% and 27.9% individually.

Figure S10. The Nitrogen adsorption and desorption isotherms of a) DT-T-3M and b) DT-Q-3E.

Figure S11. Pore size distribution of the aerogels, a) DT-T-3M, b) DT-Q-3E.

Table R1. A comparison of the removal	l rate and separat	tion efficiency of	f aerogel in
this work and the rate of materials report	rted in previous	works.	

Material	Removal rate $(L \cdot m^{-2} \cdot s^{-1})$	Separation	Reference
		efficiency	
mesh	20	93%	1
mesh	15	96%	2
membrane	0.13	99%	3
membrane	0.09	100%	4
Aerogel (monolith)	0.18	99%	This work

Reference 1: J. Li, L. Yan, H. Li, J. Li, F. Zha and Z. Lei, RSC Adv., 2015, 5, 53802; Reference 2: J. Li, L. Yan, H. Li, W. Li, F. Zha and Z. Lei, J. Mater. Chem. A, 2015, 3, 14696;

Reference 3: X. Gao, L. Xu, Z. Xue, L. Feng, J. Peng, Y. Wen, S. Wang, and X. Zhang, Adv. Mater., 2014, 26, 1771;

Reference 4: M. Obaid, N. A. M. Barakat, O.A. Fadali, M. Motlak, A. A. Almajid and

K. A. Khalil, Chem. Eng. J., 2015, 259, 449.