Supporting Information

Fe₂O₃ Hollow Microspheres as Highly Selective Catalysts to α-olefins

Jiaqiang Sun,* Pengfei Wang and Jiangang Chen*

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,

Taiyuan, 030001, China

Figure S1. XRD patterns of the Fe–glycerate solid spheres (a), yolk-shell spheres (b) and hollow spheres (c) precursors.

Figure S2. C1s spectra of the Fe₂O₃ solid spheres, yolk-shell spheres and hollow spheres.

Figure S3. Mössbauer spectra of the Fe₂O₃ solid spheres, yolk-shell spheres and hollow spheres.

Figure S4. Nitrogen adsorption–desorption isotherms and pore size distributions (inset) of the Fe–glycerate solid spheres (a), yolk-shell spheres (b) and hollow spheres (c) precursors.

Figure S5. Nitrogen adsorption-desorption isotherms and pore size distributions (inset) of the Fe₂O₃ solid

spheres (a), yolk-shell spheres (b) and hollow spheres (c).

Figure S6. H₂-TPR profiles of the Fe₂O₃ solid spheres, yolk-shell spheres and hollow spheres.

Figure S7. Nitrogen adsorption–desorption isotherms and pore size distributions (inset) of the Fe₂O₃ solid spheres (a), yolk-shell spheres (b) and hollow spheres (c) after 400 h on stream.

Figure S8. XRD patterns of the Fe_2O_3 solid spheres (a), yolk-shell spheres (b) and hollow spheres (c) after 400 h on stream.

Table S1. Mössbauer spectroscopy parameters of the as-prepared Fe₂O₃ spheres.^a

Samples	IS (mm/s)	QS (mm/s)	Hhf(T)	Area (%)	Phase
Fe ₂ O ₃ solid spheres	0.35	-0.17	39.1	98.9	α -Fe ₂ O ₃
	0.58	1.13	-	1.1	γ -Fe ₂ O ₃ (spm)
Fe ₂ O ₃ yolk-shell spheres	0.35	-0.13	42.55	98.1	a-Fe ₂ O ₃
	0.34	0.95	-	1.9	γ -Fe ₂ O ₃ (spm)
Fe ₂ O ₃ hollow spheres	0.38	0	35.8	83.4	a-Fe ₂ O ₃
	0.39	0.66	-	16.6	γ -Fe ₂ O ₃ (spm)

^a IS: isomer shift (relative to α -Fe); QS: quadrupole splitting; Hhf: hyperfine magnetic field.

 Table S2. Textural characterization of Fe–glycerate precursors, the Fe–glycerate precursors-derived

 catalysts and the used catalysts

Samples	$S_{BET}^{a} (m^2 g^{-1})$	S_{meso}^{b} (m ² g ⁻¹	V_{meso}^{b} (cm ³ g ⁻¹)	$D_{meso}^{b}(nm)$
Fe-glycerate solid spheres	91	143	0.19	8.5
Fe-glycerate yolk-shell sphere	s125	174	0.24	12.0
Fe-glycerate hollow spheres	137	178	0.39	15.0

Fe ₂ O ₃ solid spheres	78	89	0.33	15.0
Fe ₂ O ₃ yolk-shell spheres	87	98	0.39	20.1
Fe ₂ O ₃ hollow spheres	92	106	0.44	20.5
Fe ₂ O ₃ solid spheres used	42	62	0.27	22.0
Fe ₂ O ₃ yolk-shell spheres used	75	81	0.43	35.0
Fe ₂ O ₃ hollow spheres used	88	102	0.50	29.7

^a Calculated by the BET method.

^b Mesoporous surface area, volume and average pore diameter of mesopores evaluated by the BJH method from the desorption branches of isotherms.

 Table S3. Catalytic performance of iron oxide catalysts after 24 h on stream in FTS.

Catalysts	Fe ₂ O ₃	Fe ₃ O ₄	Fe ₃ O ₄	Fe _x O _y @C	Fe-rGO ^[22e]			
so sp	solid spheres	yolk-shell	hollow	nanotubes	es nanosphe res ^[22b]	microsphe res ^[22c]		
		spheres	spheres	[22a]				
FTY	7.3	8.7	14.0	11.4	11.0	10.3	23.9	22.5
$(\mu mol_{CO}g_{Fe}^{-1}s^{-1})$								
CO conv. (%)	14.1	17.3	32.4	65.0	70.5	47.0	76	78
CO ₂ selectivity (%)	11.7	15.2	26.8	25.7	39.4	42.7	23	12
Hydrocarbon selectivity (C-mol %, CO ₂ -free)								
CH_4	15.2	4.7	4.9	7.6	7.7	19.6	14	8.1
C ₂₋₄ olefins	27.4	16.8	16.5	15.2	21.6	35.3	~14	~13.5
C ₂₋₄ paraffins	17.1	4.1	5.3	5.1	6.5	14.0	~12	~12.5
C_{5^+} olefins	23.7	42.5	43.7	35.4		~9	~20	~30.1
C ₅₊ paraffins	16.6	31.9	29.6	36.7	64.2 (C ₅₊)	~22.1	~40	~35.8

solid spheres	0.35	0.04	21.8	33.2	χ -Fe ₅ C ₂ (I)
	0.26	0.15	10.6	21.7	χ -Fe ₅ C ₂ (III)
	0.21	0.14	18.4	26.0	ε'-Fe2.2C
	0.33	0.03	48.8	5.1	$Fe_{3}O_{4}(A)$
	0.71	-0.05	45.5	9.2	$Fe_{3}O_{4}(B)$
	0.28	1.07	-	4.8	Fe ³⁺ (spm)
yolk-shell spheres	0.21	0.14	18.6	33.9	χ -Fe ₅ C ₂ (I)
	0.27	0.15	10.7	19.7	χ -Fe ₅ C ₂ (III)
	0.35	0.03	21.8	32.3	ε'-Fe2.2C
	0.35	0.04	48.9	5.5	$Fe_3O_4(A)$
	0.75	-0.07	45.6	5.3	$Fe_3O_4(B)$
	0.25	1.07	-	3.3	Fe ³⁺ (spm)
hollow spheres	0.35	0.05	21.9	35.1	χ -Fe ₅ C ₂ (I)
	0.26	0.15	10.7	22.0	χ -Fe ₅ C ₂ (III)
	0.21	0.14	18.4	29.3	ε'-Fe2.2C
	0.40	-0.05	48.7	5.5	$Fe_3O_4(A)$
	0.75	-0.01	45.3	4.6	$Fe_3O_4(B)$
	0.26	1.03	-	3.5	Fe ³⁺ (spm)

Table S4. Mössbauer spectroscopy parameters of the Fe₂O₃ spheres after FTS.

IS (mm/s) QS (mm/s) Hhf (T) Area (%) Phase

Catalysts

^a IS: isomer shift (relative to α-Fe); QS: quadrupole splitting; Hhf: hyperfine magnetic field; A (tetrahedral Fe³⁺); B (octahedral Fe³⁺, Fe²⁺)