Supporting Information

NMOFs self-templating synthesis of hollow porous metal oxides for enhanced lithium-ion battery anodes

Rui Dang *a, Xilai Jia^b, Peng Wang^b, Hongyi Gao^b

a. Northwest Institute For Nonferrous Metal Research, 96 Weiyang Road, Weiyang district, 710016, P.R. China.

 b. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China

Corresponding Author

Northwest Institute For Nonferrous Metal Research, 96 Weiyang Road, Weiyang district, 710016, P.R. China.

*Email: dr0501@163.com (Rui Dang)

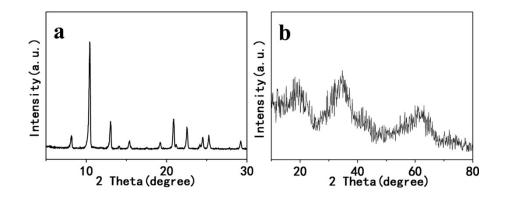


Fig. S1. XRD patterns of a) Fe-MIL-88A, and b) Fe-MIL-88A@Fe(OH)₃.

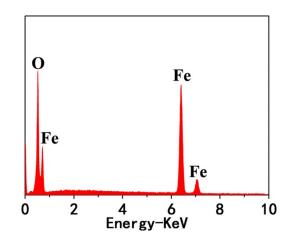
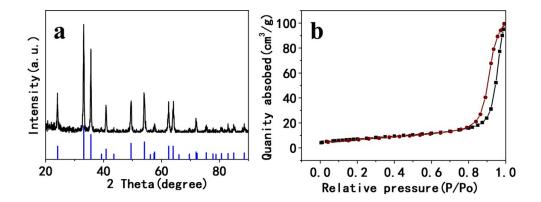
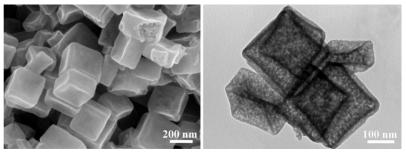




Fig. S2. EDX patterns of hollow porous Fe_2O_3 hexagonal nanorods

Fig. S3. a) XRD pattern and b) N₂-sorption isotherms of the Fe-MIL-88A direct calcination in air.

Fig. S4. a) SEM images, b) TEM images of hollow porous TiO₂ nanoboxes derived from Ti-MIL-125 by the similar strategy.

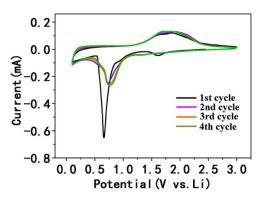


Fig. S5. a) CV curves of hollow porous Fe₂O₃ hexagonal nanorods.

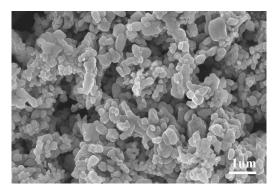


Fig. S6 SEM image of the commercial Fe₂O₃.

Table 1. Comparison of various Fe₂O₃ materials as anodes for LIBs

Materials	Current density	Cycle number	Specific capacity	Ref
Fe ₂ O ₃ nanoflakes	0.05C	50	1095 mAh/g	53
Fe ₂ O ₃ nanoflakes	0.1C	80	680 mAh/g	54
Fe ₂ O ₃ nanorods	0.2C	30	908 mAh/g	55
Fe ₂ O ₃ nanorods	0.1C	30	800 mAh/g	56
Fe ₂ O ₃ nanorods	0.1C	50	893 mAh/g	57
Hollow porous Fe ₂ O ₃	0.1C	100	1219 mAh/g	This work
nanorods				