Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

Thiophene insertion for continuously modulating photoelectronic property of triphenylamine-based metal-organic framework for photocatalytic sulfonylation-cyclisation of activated alkenes[†] Tiexin Zhang,** Yusheng Shi,* Sen Zhang,* Chen Jia,* Cheng He* and Chunying Duan**.b

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
 ^bCollaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
 *Corresponding author: Phone and Fax: +86-411-84986476;
 E-mail address: <u>zhangtiexin@dlut.edu.cn</u>; cyduan@dlut.edu.cn

Syntheses and Characterization of Ligands

4-Bromo-N-(4-bromophenyl)-N-phenylaniline

The title compound was prepared according to the literature protocol.¹ To a 100 mL oven-dried flask was added aniline (1.022 g, 10.97 mmol), 1-bromo-4-iodobenze (6.98 g, 24.67 mmol), phenanthroline (74 mg, 0.4 mmol), cuprous chloride (43 mg, 0.4 mmol) and KOH flakes (4.83 g, 86.14 mmol) under N₂, then degassed toluene (11 mL) was added by syringe. The mixture was heated to reflux within 30 min, then stirred under reflux for 48 h. After cooling to 75 °C, toluene (15 mL) and distilled water (10 mL) were added, the organic phase was collected and dried with anhydrous MgSO₄, the filtrate was evaporated under vacuum and the crude product was purified by flash column chromatography to obtain the product. (3.53 g, 78 %). ¹H NMR (400 MHz, CDCl3) δ 7.33 (d, *J* = 8.8 Hz, 4H), 7.26 (dd, *J* = 9.7, 6.1 Hz, 2H), 7.08 – 7.03 (m, 3H), 6.93 (d, *J* = 8.8 Hz, 4H). ¹³C NMR (101 MHz, CDCl3) δ 147.1, 146.7, 132.5, 129.7, 125.6, 124.8, 123.9, 115.6. The NMR spectrum were in compliance with the reported data.¹

N-Phenyl-4-(thiophen-2-yl)-N-(4-(thiophen-2-yl)phenyl)aniline

The title compound was prepared according to the literature protocol.² 2-bromothiophene (1.43 mL, 14.79 mmol) was added dropwise to the mixture of fresh magnesium turnings (0.72 g, 29.58 mmol), I₂ (catalytic amount) and THF (15 mL) at 0 °C under N₂, after being stirred under reflux for 2 h. the solution of Grignard reagent was added dropwise to a mixture of 4-bromo-*N*-(4-bromphenyl)-*N*-phenylaniline (1.99 g, 4.93 mmol) and Pd(PPh₃)₂Cl₂ (394 mg) in THF (15 mL), the reaction was reflux for 12 h and then cooled to room temperature. Saturated aqueous solution of NH₄Cl was added to quench the reaction at 0 °C, then chloroform was added, the combined organic phase was collected and dried over NaSO₄, the filtrate was evaporated under vacuum and the crude product was purified by flash column chromatography to get the product. (0.93 g, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.7 Hz, 4H), 7.31 – 7.26 (m, 2H), 7.23 – 7.21 (m, 4H), 7.17 – 7.13 (m, 2H), 7.10 (d, *J* = 8.7 Hz, 4H), 7.08 – 7.04 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.3, 147.0, 144.3, 129.5, 129.1, 128.1, 127.0, 124.8, 124.27 (overlapped), 124.25 (overlapped), 123.5, 122.5. The NMR spectrum were in compliance with the reported data.²

1,1'-((((4-Acetylphenyl)azanediyl)bis(4,1-phenylene))bis(thiophene-5,2-diyl))bis(ethan-1-one)

N-phenyl-4-(thiophen-2-yl)-*N*-(4-(thiophen-2-yl)phenyl)aniline (2.05 g, 5.00 mmol), AlCl₃ (2.20 g, 16.50 mmol) and anhydrous DCM (100 mL) were added to a three-neck flask under N_2 , the mixture was cooled to 0 °C by ice-water bath. Acetyl chloride (2.44 mL, 34.50 mmol) was then added dropwise to the

stirred reaction mixture at 0 °C. The reaction was allowed to warm to room temperature and continued for overnight. The resulting mixture was poured to ice water and the organic phase was collected and dried over NaSO₄, the filtrate was evaporated under vacuum and the crude product was purified by flash column chromatography to get the product. (2.04 g, 76%). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 3.9 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 4H), 7.29 (d, *J* = 3.9 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 4H), 7.13 (d, *J* = 8.7 Hz, 2H), 2.571 (s, 6H, overlapped), 2.566 (s, 3H, overlapped). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 190.6, 152.0, 151.0, 147.0, 143.0, 133.7, 131.6, 130.2, 129.5, 127.6, 125.6, 123.7, 122.0, 26.6, 26.4. HRMS (ESI) m/z calcd for C₃₂H₂₆NO₃S₂⁺ [M + H]⁺ 536.1349, found 536.1350.

Bis[4-(5-carboxy-2-thienyl)phenyl](4-carboxyphenyl)amine (H₃BCTA, 2)

Br₂ (1.7 mL, 33.18 mmol) was added dropwise to the solution of NaOH (3.9 g, 97.51 mmol) in water (16 mL) on ice bath, the mixture was further stirred for 20 min, then it was transferred to a constant pressure funnel and added dropwise to a solution of 1,1'-((((4-acetylphenyl)azanediyl)bis(4,1-phenylene))bis(thiophene-5,2-diyl))bis(ethan-1-one) (1.61 g, 3.00 mmol) in 1,4-dioxane (30 mL), the reaction mixture was heated at 45 °C for 5 h, after that it was put on ice bath and saturated hydroxylamine HCl was added to deoxidize the excessive sodium hypobromite. The solution was acidified by diluted hydrochloric acid and the solid product was filtered, the crude product was recrystallized from acetic acid to afford pure product as yellow powder. (1.48 g, 91%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.32 (br s, 3H), 7.87 (d, *J* = 8.6 Hz, 2H), 7.75 (d, *J* = 8.5 Hz, 4H), 7.70 (d, *J* = 3.8 Hz, 2H), 7.53 (d, *J* = 3.8 Hz, 2H), 7.17 (d, *J* = 8.5 Hz, 4H), 7.09 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 166.8, 162.8, 150.2, 149.3, 146.4, 134.4, 132.8, 131.0, 128.7, 127.4, 125.4, 124.4, 124.2, 121.6. FTIR (KBr pellet; cm⁻¹): 3269, 2675, 2549, 1677, 1594, 1536, 1508, 1448, 1320, 1275, 1178, 1104, 810, 752 cm⁻¹. HRMS (ESI) m/z calcd for C₂₉H₁₈NO₆S₂⁻ [M - H]⁻ 540.0581, found 540.0579.

Mono[4-(5-carboxy-2-thienyl)phenyl]bis(4-carboxyphenyl)amine (H₃MCTA, 1) was prepared in a similar protocol as H₃BCTA, the yellow powder like product was obtained in a yield of 86 % (1.18 g). ¹H NMR (400 MHz, DMSO- d_6) δ 12.84 (br s, 3H), 7.89 (d, J = 8.8 Hz, 4H), 7.76 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 3.9 Hz, 1H), 7.55 (d, J = 3.9 Hz, 1H), 7.18 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.8 Hz, 4H). ¹³C NMR (101 MHz, DMSO) δ 166.8, 162.8, 150.0, 149.2, 146.2, 134.5, 133.0, 131.1, 129.2, 127.5, 126.0, 125.3, 124.4, 122.9. FTIR (KBr pellet; cm⁻¹): 2964, 2659, 2539, 1690, 1672, 1613, 1593, 1536, 1508, 1450, 1413, 1316, 1281, 1175, 1106, 772 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₅H₁₆NO₆S⁻ [M - H]⁻ 458.0704, found 458.0701.

Tris[4-(5-carboxy-2-thienyl)phenyl]amine (H₃TCTA, 3) was prepared was prepared in a similar protocol as H₃**BCTA**, the yellow powder was obtained as the product in a yield of 88 % (1.64 g). The NMR spectrum of **3** were in compliance with the reported data.^{3,4} ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.10 (br s, 3H), 7.74–7.70 (m, 9H), 7.51 (d, *J* = 3.9 Hz, 3H), 7.15 (d, *J* = 8.7 Hz, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.8, 149.4, 146.7, 134.4, 132.6, 128.0, 127.3, 124.4, 123.9.

Figure S.2. $^{\rm 13}C$ NMR spectra of $\rm H_3MCTA,\,1.$

Figure S.3. ¹H NMR spectra of H₃BCTA, 2.

Figure S.4. ¹³C NMR spectra of H₃BCTA, 2.

Structures of Catalyst

Table S.1. Crystal data and structure refinement for Zn-BCTA.

Empirical formula	$C_{64}H_{46}N_4O_{15}S_4Zn_4$	
Formula weight	1500.77	
Temperature	220(2) K	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	<i>a</i> = 32.7017(17) Å	α = 90°
	<i>b</i> = 54.218(3) Å	β = 132.2510(10)°
	<i>c</i> = 23.843(2) Å	γ = 90°
Volume	31292(4) Å ³	
Z	8	
Density (calculated)	0.637 g/cm ³	
Absorption coefficient	0.688 mm ⁻¹	
F(000)	6096	
Reflections collected	431251	
Independent reflections	27556	
R _(int)	0.0717	
Data/restraints/parameters	27556 / 108 / 823	
Goodness-of-fit on F2	1.018	
$R_1^{a} [l > 2\sigma(l)]$	0.0473	
$wR_2^b[I>2\sigma(I)]$	0.1302	
R ₁ ª (all data)	0.0878	
$wR_{2^{b}}$ (all data)	0.1438	
Largest diff. peak and hole	0.344 and -0.235 e.Å ⁻³	
CCDC number	1861320	

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_o|$

^b w $R_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$

Figure S.5. Thermogravimetric analysis (TGA) curve of Zn-BCTA in the flowing N_2 atmosphere.

Figure S.6. Ball-and-stick representation of Zn-BCTA in an asymmetric unit with atomic-numbering scheme. Hydrogen atoms are omitted for clarity.

Selective bond distance (Å): Zn1-O1 1.9197(16), Zn1-O2 1.9423(18), Zn1-O12^{#4} 1.945(2), Zn1-O10^{#3} 1.950(2), Zn2-O1 1.9161(16), Zn2-O4^{#1} 1.9301(18), Zn2-O11^{#3} 1.966(2), Zn2-O6^{#2} 1.9675(19), Zn3-O1 1.9262(16), Zn3-O7^{#2} 1.9588(18), Zn3-O8 1.9551(19), Zn3-O13^{#4} 1.971(2), Zn4-O1 2.0267(16), Zn4-O3 2.0854(19), Zn4-O5^{#1} 2.103(2), Zn4-O9 2.1034(19), Zn4-O14 2.1725(19), Zn4-O15 2.0980(19).

Selective angles (°): 01-Zn1-O2 118.05(8), 01-Zn1-O12^{#4} 112.64(8), 02-Zn1-O12^{#4} 103.69(9), 01-Zn1-O10^{#3} 112.14(8), 02-Zn1-O10^{#3} 105.33(9), 012-Zn1-O10^{#3} 103.64(9), Zn2-O1-Zn1 109.57(7), Zn2-O1-Zn3 109.53(7), Zn1-O1-Zn3 108.15(9), Zn2-O1-Zn4 108.87(8), Zn1-O1-Zn4 112.10(7), Zn3-O1-Zn4 108.59(7), 01-Zn2-O4^{#1} 123.07(8), 01-Zn2-O11^{#3} 111.70(8), 04^{#1}-Zn2-O11^{#3} 104.00(9), 01-Zn2-O6^{#2} 109.71(8), 04^{#1}-Zn2-O6^{#2} 100.68(8), 011^{#3}-Zn2-O6^{#2} 106.10(9), C1-O2-Zn1 122.95(18), 01-Zn3-O8 115.61(7), 01-Zn3-O7^{#2} 114.05(8), 08-Zn3-O7^{#2} 109.17(8), 01-Zn3-O13^{#4} 111.82(8), 08-Zn3-O13^{#4} 98.13(9), 07^{#2}-Zn3-O13^{#4} 106.62(9), C1-O3-Zn4 140.37(18), 01-Zn4-O3 99.16(7), 01-Zn4-O15 172.63(7), 03-Zn4-O15 88.17(8), 01-Zn4-O5^{#1} 94.51(7), 03-Zn4-O5^{#1} 88.78(8), 015-Zn4-O5^{#1} 84.79(8), 01-Zn4-O9 93.49(8), 03-Zn4-O19 90.47(8), 015-Zn4-O19 97.22(8), 05^{#1}-Zn4-O9 171.99(8), 01-Zn4-O14 85.16(7), 03-Zn4-O14 173.73(8), 015-Zn4-O14 87.48(8), 05^{#1}-Zn4-O14 86.34(8), 09-Zn4-O14 93.82(8), C12^{#1}-O4^{#1}-Zn2 116.38(18), C12^{#1}-O5^{#1}-Zn4 123.70(18), C19^{#2}-O6^{#2}-Zn2 132.70(18), C19^{#2}-O7^{#2}-Zn3 126.50(19), C30-08-Zn3 120.10(18), C30-09-Zn4 130.91(18), C41^{#3}-O10^{#3}-Zn1 129.2(2), C41^{#3}-O11^{#3}-Zn2 129.3(2), C52^{#4}-O12^{#4}-Zn1 129.9(2), C52^{#4}-O13^{#4}-Zn3 129.3(2), C59-O14-Zn4 123.5(2), C62-O15-Zn4 123.1(2).

Symmetry code: #1 0.5+x, 0.5-y, 0.5+z; #2 1+x, y, 1+z; #3 x, y, 1+z; #4 x, -y, 0.5+z

Figure S.7. View of the crystal packing of Zn-BCTA along (a) the *a* direction; (b) the *b* direction; (c) the *c* direction.

Figure S.8. Confocal images of empty MOF Zn-BCTA crystals (a and c) and the ones soaked with methylene blue (b and d). Brightfield images (a and b) and confocal images (c and d).

NMR Data of Photocatalytic Products

2,4-Dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione⁵

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as white solid (76 mg, 85% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.31 – 8.26 (m, 1H), 7.45 – 7.40 (m, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.23 – 7.19 (m, 1H), 7.16 (d, *J* = 8.1 Hz, 2H), 4.44 (d, *J* = 14.6 Hz, 1H), 3.87 (d, *J* = 14.6 Hz, 1H), 3.39 (s, 3H), 2.39 (s, 3H), 1.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 164.0, 144.7, 139.4, 137.4, 133.6, 129.9, 129.5, 128.3, 127.9, 126.1, 125.0, 65.02, 45.61, 31.88, 27.73, 21.77.

2,4-Dimethyl-4-(tosylmethyl)-7-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (89 mg, 84% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 7.52 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.14 (d, *J* = 7.9 Hz, 2H), 4.47 (d, *J* = 14.7 Hz, 1H), 3.89 (d, *J* = 14.7 Hz, 1H), 3.44 (s, 3H), 2.38 (s, 3H), 1.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 162.8, 145.0, 142.8, 137.1, 130.9 (q, *J* = 33.5 Hz), 130.0, 129.6 (q, *J* = 3.1 Hz), 127.6, 127.0, 126.7 (q, *J* = 3.7 Hz), 125.8, 123.5 (q, *J* = 272.8 Hz), 64.9, 45.6, 31.4, 28.0, 21.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -63.0 (s). HRMS (ESI) *m/z* calcd for C₂₀H₁₈F₃NNaO₄S⁺ [M + Na]⁺ 448.0801, found 448.0805.

1,3-Dimethyl-3-(tosylmethyl)indolin-2-one⁶

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (75 mg, 91% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.2 Hz, 2H), 7.29 (td, *J* = 7.8, 1.0 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 7.3 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 3.85 (d, *J* = 14.5 Hz, 1H), 3.65 (d, *J* = 14.5 Hz, 1H), 3.16 (s, 3H), 2.40 (s, 3H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 144.5, 143.4, 137.2, 129.8, 129.6, 128.7, 128.0, 124.3, 122.6, 108.5, 62.1, 45.8, 26.7, 25.6, 21.7.

3-Methyl-1-phenyl-3-(tosylmethyl)indolin-2-one⁶

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as white solid (64 mg, 66% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 4H), 7.43 – 7.41 (m, 3H), 7.21 – 7.16 (m, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.01 (dd, *J* = 7.5, 0.8 Hz, 1H), 6.87 (td, *J* = 7.5, 0.9 Hz, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 3.97 (d, *J* = 14.5 Hz, 1H), 3.75 (d, *J* = 14.5 Hz, 1H), 1.49 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.5, 144.4, 143.7, 137.4, 134.6,

129.73 (partially overlapped), 129.70 (partially overlapped), 129.4, 128.5, 128.3, 127.8, 126.9, 124.1, 122.9, 109.8, 62.5, 45.9, 25.9, 21.7.

1-Methyl-1-(tosylmethyl)-5,6-dihydro-1H-pyrrolo[3,2,1-ij]quinolin-2(4H)-one⁶

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (70 mg, 79% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.03 (dd, *J* = 7.7, 0.6 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 6.84 (t, *J* = 7.6 Hz, 1H), 3.81 (d, *J* = 14.5 Hz, 1H), 3.74 – 3.67 (m, 1H), 3.65 (d, *J* = 14.4 Hz, 1H), 3.63 – 3.58 (m, 1H), 2.84 – 2.72 (m, 2H), 2.40 (s, 3H), 2.09 – 1.93 (m, 2H), 1.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 144.5, 139.2, 137.5, 129.7, 128.6, 128.1, 127.5, 122.3, 122.2, 120.6, 62.1, 47.1, 39.3, 25.3, 24.8, 21.8, 21.2.

1,3-Dimethyl-3-(tosylmethyl)-1H-pyrrolo[3,2-b]pyridin-2(3H)-one

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (71 mg, 86% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.21 – 7.15 (m, 3H), 7.11 (dd, *J* = 7.9, 1.3 Hz, 1H), 3.93 (d, *J* = 14.3 Hz, 1H), 3.87 (d, *J* = 14.4 Hz, 1H), 3.29 (s, 3H), 2.40 (s, 3H), 1.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.5, 151.3, 144.5, 142.9, 139.1, 137.4, 129.8, 127.8, 123.4, 114.7, 61.5, 46.0, 26.6, 23.7, 21.8. HRMS (ESI) *m/z* calcd for C₁₇H₁₉N₂O₃S⁺ [M + H]⁺ 331.1111, found 331.1113.

2,4-Dimethyl-4-(1-tosylethyl)isoquinoline-1,3(2H,4H)-dione

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (59 mg, 63% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.52 (td, *J* = 8.0, 1.4 Hz, 1H), 7.47 (d, *J* = 7.3 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.43 – 7.40 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 3.84 (q, *J* = 7.2 Hz, 1H), 3.41 (s, 3H), 2.39 (s, 3H), 1.82 (s, 3H), 1.52 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 164.2, 144.6, 141.6, 136.7, 133.6, 129.8, 129.2, 128.3, 128.1, 126.4, 125.5, 69.8, 48.1, 28.2, 27.7, 21.7, 12.4. HRMS (ESI) *m/z* calcd for C₂₀H₂₂NO₄S⁺ [M + H]⁺ 372.1264, found 372.1269.

2'-Methyl-2-tosyl-1'H-spiro[cyclopentane-1,4'-isoquinoline]-1',3'(2'H)-dione

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (58 mg, 61% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.36 (d, *J* = 8.3 Hz, 2H, overlapped), 7.38 – 7.32 (m, 1H, overlapped), 7.28 (d, *J* = 8.0 Hz, 1H, partially overlapped), 7.09 (d, *J* = 7.9 Hz, 2H), 3.93 (dd, *J* = 12.2, 7.3 Hz, 1H), 3.44 (s, 3H), 2.83 (tt, *J* = 12.4, 9.4 Hz, 1H), 2.69 (ddd, *J* = 13.9, 8.9, 5.8 Hz, 1H), 2.35 (s, 3H, overlapped), 2.44 – 2.22 (m, 3H, partially overlapped), 2.10 – 1.98 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.0, 164.0, 144.7, 141.8, 136.3, 133.9, 129.8, 128.9, 127.8, 127.6, 125.8, 124.9, 78.5, 54.4, 43.8, 28.0, 27.7, 23.5, 21.7. HRMS (ESI) *m/z* calcd for C₂₁H₂₂NO₄S⁺ [M + H]⁺ 384.1264, found 384.1266.

2,4-Dimethyl-4-((phenylsulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione⁵

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as white solid (70 mg, 82% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, *J* = 7.8 Hz, 1H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.36 - 7.31 (m, 3H), 7.15 (d, *J* = 7.8 Hz, 1H), 4.45 (d, *J* = 14.7 Hz, 1H), 3.94 (d, *J* = 14.7 Hz, 1H), 3.41 (s, 3H), 1.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 163.9, 140.2, 139.1, 133.6, 133.5, 129.3, 129.2, 128.2, 127.6, 126.0, 124.8, 64.9, 45.4, 31.6, 27.6.

4-(((4-Fluorophenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione⁵

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as white solid (68 mg, 75% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.32 – 8.27 (m, 1H), 7.52 – 7.47 (m, 2H), 7.46 – 7.39 (m, 2H), 7.20 – 7.15 (m, 1H), 7.07 – 7.00 (m, 2H), 4.46 (d, *J* = 14.7 Hz, 1H), 3.90 (d, *J* = 14.7 Hz, 1H), 3.42 (s, 3H), 1.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 165.7 (q, *J* = 256.8 Hz), 163.9, 139.2, 136.49 (q, *J* = 3.1 Hz), 133.7, 130.7 (q, *J* = 9.7 Hz), 129.6, 128.4, 125.9, 125.0, 116.5 (q, *J* = 22.7 Hz), 65.1, 45.6, 31.7, 27.8. ¹⁹F NMR (470 MHz, CDCl₃) δ -103.31 – -103.38 (m).

4-(((4-Bromophenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione5

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as white solid (86 mg, 82% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 7.7 Hz, 1H), 4.45 (d, *J* = 14.7 Hz, 1H), 3.90 (d, *J* = 14.7 Hz, 1H), 3.42 (s, 3H), 1.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 163.8, 139.3, 139.1, 133.7, 132.6, 129.6, 129.3, 129.0, 128.4, 125.9, 125.0, 65.0, 45.6, 31.7, 27.8.

4-(((4-Methoxyphenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione7

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (82 mg, 88% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (500 MHz, CDCl₃) δ 8.29 – 8.27 (m, 1H), 7.45 – 7.36 (m, 4H), 7.23 – 7.18 (m, 2H), 6.81 (d, *J* = 8.9 Hz, 1H), 4.43 (d, *J* = 14.6 Hz, 1H), 3.87 (d, *J* = 14.6 Hz, 1H), 3.83 (s, 3H), 3.39 (s, 3H), 1.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 164.0, 163.8, 139.4, 133.6, 131.9, 130.0, 129.4, 128.2, 126.1, 125.0, 114.4, 65.2, 55.9, 45.6, 31.8, 27.7.

2,4-Dimethyl-4-((naphthalen-1-ylsulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (83 mg, 84% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 8.6 Hz, 1H), 8.22 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.94 (t, *J* = 8.2 Hz, 2H), 7.78 – 7.72 (m, 1H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.45 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.30 – 7.23 (m, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.97 (td, *J* = 7.8, 1.3 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 4.59 (d, *J* = 14.7 Hz, 1H), 4.11 (d, *J* = 14.6 Hz, 1H), 3.43 (s, 3H), 1.56 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 164.0, 138.9, 135.0, 134.9, 134.1, 133.1, 130.2, 129.5, 129.2, 129.1, 128.3, 128.2, 127.2, 125.5, 124.9, 124.6, 123.9, 64.3, 45.4, 31.5, 27.7. HRMS (ESI) *m/z* calcd for C₂₂H₂₀NO₄S⁺ [M + H]⁺ 394.1108, found 394.1104.

2,4-Dimethyl-4-((thiophen-2-ylsulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione8

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (81 mg, 93% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 8.32 – 8.25 (m, 1H), 7.57 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.24 – 7.18 (m, 1H), 7.11 (dd, *J* = 3.8, 1.2 Hz, 1H), 6.90 (dd, *J* = 4.8, 3.9 Hz, 1H), 4.56 (d, *J* = 14.7 Hz, 1H), 4.01 (d, *J* = 14.7 Hz, 1H), 3.42 (s, 3H), 1.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 163.9, 141.5, 139.2, 134.4, 134.2, 133.6, 129.5, 128.3, 127.9, 125.8, 125.0, 66.3, 45.6, 31.7, 27.7.

4-((Ethylsulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione

This compound was synthesized according to the general procedure (GP) and isolated by column chromatography as sticky oil (64 mg, 87% yield) using petroleum ether/ethyl acetate (4:1 v:v) as the eluent system. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.68 (td, *J* = 7.6, 1.4 Hz, 1H), 7.51 (m, 2H), 4.27 (d, *J* = 14.4 Hz, 1H), 3.74 (d, *J* = 14.4 Hz, 1H), 3.42 (s, 3H), 2.80 – 2.64 (m, 2H), 1.63 (s, 3H), 1.28 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 163.9, 140.1, 133.9, 129.7, 128.4, 125.4, 124.8, 60.6, 50.3, 45.5, 31.5, 27.6, 6.4. HRMS (ESI) *m/z* calcd. for C₁₄H₁₈NO₄S⁺ [M + H]⁺ 296.0951, found 296.0952.

NMR Spectrum of Photocatalytic Products

Figure S.9. ¹H NMR spectra of 3a.

Figure S.10. ¹³C NMR spectra of 3a.

Figure S.11. ¹H NMR spectra of 3b.

Figure S.12. ¹³C NMR spectra of 3b.

Figure S.13. ¹⁹F NMR spectra of 3b.

Figure S.14. ¹H NMR spectra of 3c.

Figure S.15. ¹³C NMR spectra of 3c.

Figure S.16. ¹H NMR spectra of 3d.

Figure S.18. ¹H NMR spectra of 3e.

Figure S.19. ¹³C NMR spectra of 3e.

Figure S.20. ¹H NMR spectra of 3f.

Figure S.21. ¹³C NMR spectra of 3f.

Figure S.22. ¹H NMR spectra of 3g.

Figure S.23. ¹³C NMR spectra of 3g.

Figure S.24. ¹H NMR spectra of 3h.

Figure S.25. ¹³C NMR spectra of 3h.

Figure S.26. ¹H NMR spectra of 3i.

Figure S.27. ¹³C NMR spectra of 3i.

Figure S.28. ¹H NMR spectra of 3j.

Figure S.29. ¹³C NMR spectra of 3j.

Figure S.30. ¹⁹F NMR spectra of 3j.

Figure S.31. ¹H NMR spectra of 3k.

Figure S.32. ¹³C NMR spectra of 3k.

Figure S.33. ¹H NMR spectra of 3I.

Figure S.34. ¹³C NMR spectra of 3I.

Figure S.35. ¹H NMR spectra of 3m.

Figure S.36. ¹³C NMR spectra of 3m.

Figure S.37. ¹H NMR spectra of 3n.

Figure S.38. ¹³C NMR spectra of 3n.

Figure S.39. ¹H NMR spectra of 30.

Supplementary Notes and references

- 1 J.-L. Lai, R.-Y. Chen and L. Lu, U.S. Pat. Appl. Publ., US 20060091359 A1 US 2004-975982, 2004.
- K. Yamamoto, M. Higuchi, K. Uchida and Y. Kojima, *Macromolecules*, 2002, **35**, 5782–5788.
 X. Guo, L. Zeng, Z. Wang, T. Zhang, C. He and C. Duan, *RSC Adv.*, 2017, **7**, 52907–52913.
- 4 T. Zhang, X. Guo, Y. Shi, C. He and C. Duan, *Nat. Commun.* 2018, **9**, accepted.
- 5 X.-F. Xia, S.-L. Zhu, D. Wang and Y.-M. Liang, *Adv. Synth. Catal.*, 2016, **358**, 859–865.
- Y.-Y. Jiang, S. Liang, C.-C. Zeng, L.-M. Hua and B.-G. Sun, *Green Chem.*, 2016, **18**, 6311–6319.
 W. Yu, P. Hu, Y. Fan, C. Yu, X. Yan, X. Li and X. Xu, *Org. Biomol. Chem.*, 2015, **13**, 3308–3313.
- 8 X. Liu, T. Cong, P. Liu and P. Sun, Org. Biomol. Chem., 2016, 14, 9416–9422.