For submission to *New J. Chem.* Revised Manuscript (NJ-ART-08-2018-004169) Self-Assembly of Rare Octanuclear Quad(double-stranded) Cluster Helicates Showing Slow Magnetic Relaxation and Magnetocaloric Effect

Min-Xia Yao,^{*,†} Li-Zheng Cai,[†] Xiao-Wei Deng,[†] Wei Zhang,[†] Sui-Jun Liu^{*,‡} and Xu-Min Cai^{*,§}

†School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.

[‡]School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.

[§]College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China

	e ()	e ()		
Gd(1)-O(12)	2.217(5)	Gd(1)-O(13)	2.251(5)	
Gd(1)-O(3)	2.373(5)	Gd(1)-O(6)	2.376(5)	
Gd(1)-O(7)	2.386(5)	Gd(1)-O(2)	2.388(5)	
Gd(1)-N(2)	2.537(6)	Gd(1)-N(5)	2.553(6)	
Gd(2)-O(1)	2.234(5)	Gd(2)-O(34)	2.352(5)	
Gd(2)-O(33)	2.353(5)	Gd(2)-O(11)	2.363(5)	
Gd(2)-O(10)	2.393(5)	Gd(2)-O(20)	2.408(5)	
Gd(2)-N(8)	2.550(6)	Gd(2)-O(1W)	2.611(5)	
Gd(2)-O(35)	2.912(5)	Gd(3)-O(8)	2.256(5)	
Gd(3)-O(34)	2.363(5)	Gd(3)-O(33)	2.365(5)	
Gd(3)-O(14)	2.372(5)	Gd(3)-O(15)	2.385(5)	
Gd(3)-O(21)	2.401(5)	Gd(3)-N(11)	2.532(6)	
Gd(3)-O(1W)	2.624(5)	Gd(3)-O(36)	2.834(6)	
Gd(4)-O(42)	2.307(5)	Gd(4)-O(41)	2.331(5)	
Gd(4)-O(36)	2.339(5)	Gd(4)-O(33)	2.360(5)	
Gd(4)-O(35)	2.367(5)	Gd(4)-O(37)	2.380(5)	

Table S1 Selected bond lengths (Å) and angles (°) for 1.

* To whom correspondence should be addressed. Email: <u>yaomx@njtech.edu.cn</u>; <u>liusuijun147@163.com</u>; xumin.cai@njfu.edu.cn. Fax: +86-25-58139528.

Gd(4)-O(16)	2.447(5)	Gd(4)-O(20)	2.448(5)
Gd(5)-O(39)	2.309(5)	Gd(5)-O(40)	2.329(5)
Gd(5)-O(38)	2.348(5)	Gd(5)-O(36)	2.350(5)
Gd(5)-O(35)	2.375(5)	Gd(5)-O(34)	2.385(5)
Gd(5)-O(9)	2.451(5)	Gd(5)-O(21)	2.472(5)
Gd(6)-O(25)	2.246(5)	Gd(6)-O(37)	2.359(5)
Gd(6)-O(18)	2.368(5)	Gd(6)-O(38)	2.380(5)
Gd(6)-O(9)	2.401(5)	Gd(6)-O(19)	2.417(5)
Gd(6)-N(14)	2.575(6)	Gd(6)-O(2W)	2.641(5)
Gd(6)-O(35)	2.704(5)	Gd(7)-O(29)	2.249(5)
Gd(7)-O(37)	2.360(5)	Gd(7)-O(23)	2.367(4)
Gd(7)-O(38)	2.372(5)	Gd(7)-O(16)	2.403(5)
Gd(7)-O(22)	2.405(5)	Gd(7)-N(17)	2.551(6)
Gd(7)-O(2W)	2.611(5)	Gd(7)-O(36)	2.917(6)
Gd(8)-O(17)	2.232(5)	Gd(8)-O(24)	2.238(5)
Gd(8)-O(27)	2.327(5)	Gd(8)-O(31)	2.382(5)
Gd(8)-O(26)	2.393(5)	Gd(8)-O(30)	2.418(5)
Gd(8)-N(20)	2.541(7)	Gd(8)-N(23)	2.547(6)
O(12)-Gd(1)-O(13)	107.97(17)	O(12)-Gd(1)-O(3)	83.77(18)
O(1)-Gd(2)-O(34)	80.63(17)	O(1)-Gd(2)-O(33)	134.53(17)
O(8)-Gd(3)-O(34)	133.71(17)	O(8)-Gd(3)-O(33)	81.10(17)
O(42)-Gd(4)-O(41)	73.85(17)	O(42)-Gd(4)-O(36)	153.68(19)
O(39)-Gd(5)-O(40)	74.23(17)	O(39)-Gd(5)-O(38)	136.73(17)
O(25)-Gd(6)-O(37)	79.16(17)	O(25)-Gd(6)-O(18)	92.33(17)
O(29)-Gd(7)-O(37)	133.79(17)	O(29)-Gd(7)-O(23)	90.59(17)
O(17)-Gd(8)-O(24)	108.15(18)	O(17)-Gd(8)-O(27)	86.52(18)

Table S2 Selected bond lengths (Å) and angles (°) for 2.

Tb(1)-O(12)	2.225(3)	Tb(1)-O(13)	2.248(3)
Tb(1)-O(3)	2.375(3)	Tb(1)-O(6)	2.378(3)
Tb(1)-O(2)	2.395(3)	Tb(1)-O(7)	2.394(3)
Tb(1)-N(2)	2.548(3)	Tb(1)-N(5)	2.555(4)
Tb(2)-O(1)	2.240(3)	Tb(2)-O(34)	2.369(3)
Tb(2)-O(11)	2.374(3)	Tb(2)-O(33)	2.373(3)
Tb(2)-O(10)	2.401(3)	Tb(2)-O(20)	2.415(3)
Tb(2)-N(8)	2.555(4)	Tb(2)-O(1W)	2.628(3)
Tb(2)-O(35)	2.895(4)	Tb(3)-O(8)	2.261(3)
Tb(3)-O(14)	2.368(3)	Tb(3)-O(33)	2.368(3)
Tb(3)-O(34)	2.369(3)	Tb(3)-O(15)	2.398(3)
Tb(3)-O(21)	2.414(3)	Tb(3)-N(11)	2.544(4)
Tb(3)-O(1W)	2.630(3)	Tb(4)-O(42)	2.309(3)

Tb(4)-O(41)	2.344(3)	Tb(4)-O(36)	2.356(3)
Tb(4)-O(35)	2.368(3)	Tb(4)-O(33)	2.377(3)
Tb(4)-O(37)	2.396(3)	Tb(4)-O(20)	2.450(3)
Tb(4)-O(16)	2.463(3)	Tb(5)-O(39)	2.306(3)
Tb(5)-O(36)	2.343(3)	Tb(5)-O(40)	2.344(3)
Tb(5)-O(38)	2.369(3)	Tb(5)-O(35)	2.379(3)
Tb(5)-O(34)	2.391(3)	Tb(5)-O(9)	2.455(3)
Tb(5)-O(21)	2.482(3)	Tb(6)-O(25)	2.252(3)
Tb(6)-O(37)	2.360(3)	Tb(6)-O(18)	2.381(3)
Tb(6)-O(38)	2.387(3)	Tb(6)-O(9)	2.397(3)
Tb(6)-O(19)	2.426(3)	Tb(6)-N(14)	2.573(4)
Tb(6)-O(2W)	2.632(3)	Tb(6)-O(35)	2.760(4)
Tb(7)-O(29)	2.268(3)	Tb(7)-O(38)	2.371(3)
Tb(7)-O(37)	2.376(3)	Tb(7)-O(23)	2.385(3)
Tb(7)-O(16)	2.412(3)	Tb(7)-O(22)	2.410(3)
Tb(7)-N(17)	2.556(4)	Tb(7)-O(2W)	2.646(3)
Tb(7)-O(36)	2.865(4)	Tb(8)-O(24)	2.235(3)
Tb(8)-O(17)	2.238(3)	Tb(8)-O(27)	2.367(3)
Tb(8)-O(31)	2.378(3)	Tb(8)-O(26)	2.402(3)
Tb(8)-O(30)	2.413(3)	Tb(8)-N(20)	2.531(4)
Tb(8)-N(23)	2.549(4)	O(12)-Tb(1)-O(13)	108.01(11)
O(12)-Tb(1)-O(3)	84.21(12)	O(1)-Tb(2)-O(34)	80.61(11)
O(1)-Tb(2)-O(11)	90.81(11)	O(8)-Tb(3)-O(14)	90.24(11)
O(8)-Tb(3)-O(33)	81.33(11)	O(42)-Tb(4)-O(41)	74.46(12)
O(42)-Tb(4)-O(36)	152.54(12)	O(39)-Tb(5)-O(36)	151.00(13)
O(39)-Tb(5)-O(40)	74.10(11)	O(25)-Tb(6)-O(37)	79.69(11)
O(25)-Tb(6)-O(18)	91.80(11)	O(29)-Tb(7)-O(38)	79.63(11)
O(29)-Tb(7)-O(37)	133.41(11)	O(24)-Tb(8)-O(17)	108.66(12)
O(24)-Tb(8)-O(27)	154.76(12)		

Table S3 Selected bond lengths (Å) and angles (°) for 3.

Dy(1)-O(12)	2.211(5)	Dy(1)-O(13)	2.244(4)	
Dy(1)-O(6)	2.356(5)	Dy(1)-O(7)	2.360(5)	
Dy(1)-O(2)	2.367(5)	Dy(1)-O(3)	2.374(5)	
Dy(1)-N(2)	2.541(6)	Dy(1)-N(5)	2.549(5)	
Dy(2)-O(1)	2.220(5)	Dy(2)-O(33)	2.332(5)	
Dy(2)-O(34)	2.354(4)	Dy(2)-O(11)	2.365(4)	
Dy(2)-O(10)	2.391(5)	Dy(2)-O(20)	2.418(4)	

Dy(2)-N(8)	2.545(6)	Dy(2)-O(1W)	2.587(4)
Dy(3)-O(8)	2.257(5)	Dy(3)-O(34)	2.353(5)
Dy(3)-O(33)	2.366(4)	Dy(3)-O(14)	2.381(4)
Dy(3)-O(15)	2.393(5)	Dy(3)-O(21)	2.402(4)
Dy(3)-N(11)	2.528(6)	Dy(3)-O(1W)	2.636(4)
Dy(3)-O(36)	2.815(5)	Dy(4)-O(42)	2.310(4)
Dy(4)-O(36)	2.334(5)	Dy(4)-O(41)	2.329(5)
Dy(4)-O(35)	2.357(5)	Dy(4)-O(33)	2.367(4)
Dy(4)-O(37)	2.389(5)	Dy(4)-O(20)	2.440(5)
Dy(4)-O(16)	2.448(5)	Dy(5)-O(39)	2.299(4)
Dy(5)-O(40)	2.320(5)	Dy(5)-O(36)	2.332(5)
Dy(5)-O(38)	2.355(4)	Dy(5)-O(35)	2.366(4)
Dy(5)-O(34)	2.380(4)	Dy(5)-O(9)	2.446(5)
Dy(5)-O(21)	2.469(5)	Dy(6)-O(25)	2.238(5)
Dy(6)-O(37)	2.349(5)	Dy(6)-O(18)	2.371(5)
Dy(6)-O(38)	2.386(5)	Dy(6)-O(9)	2.411(4)
Dy(6)-O(19)	2.427(4)	Dy(6)-N(14)	2.554(6)
Dy(6)-O(35)	2.665(5)	Dy(6)-O(2W)	2.668(4)
Dy(7)-O(29)	2.245(4)	Dy(7)-O(37)	2.356(4)
Dy(7)-O(38)	2.360(4)	Dy(7)-O(23)	2.371(4)
Dy(7)-O(16)	2.396(4)	Dy(7)-O(22)	2.400(5)
Dy(7)-N(17)	2.533(6)	Dy(7)-O(2W)	2.594(4)
Dy(8)-O(17)	2.226(5)	Dy(8)-O(24)	2.231(5)
Dy(8)-O(27)	2.337(5)	Dy(8)-O(31)	2.385(5)
Dy(8)-O(26)	2.390(5)	Dy(8)-O(30)	2.402(5)
Dy(8)-N(20)	2.529(6)	Dy(8)-N(23)	2.547(6)
O(12)-Dy(1)-O(13)	107.06(16)	O(12)-Dy(1)-O(6)	153.99(17)
O(1)-Dy(2)-O(33)	135.09(16)	O(1)-Dy(2)-O(34)	81.07(16)
O(8)-Dy(3)-O(34)	133.68(16)	O(8)-Dy(3)-O(33)	81.35(16)
O(42)-Dy(4)-O(36)	154.11(17)	O(42)-Dy(4)-O(41)	73.99(17)
O(39)-Dy(5)-O(40)	74.02(16)	O(39)-Dy(5)-O(36)	149.32(18)
O(25)-Dy(6)-O(37)	78.73(16)	O(25)-Dy(6)-O(18)	91.98(16)
O(29)-Dy(7)-O(37)	134.96(17)	O(29)-Dy(7)-O(38)	81.19(16)
O(17)-Dy(8)-O(24)	107.62(17)	O(17)-Dy(8)-O(27)	86.83(17)

Table S4 Selected bond lengths (Å) and angles (°) for 4.

Ho(1)-O(12)	2.217(5)	Ho(1)-O(13)	2.253(4)
Ho(1)-O(6)	2.378(5)	Ho(1)-O(3)	2.381(4)

Ho(1)-O(7)	2.396(4)	Ho(1)-O(2)	2.404(5)
Ho(1)-N(2)	2.540(5)	Ho(1)-N(5)	2.545(5)
Ho(2)-O(1)	2.234(4)	Ho(2)-O(34)	2.352(4)
Ho(2)-O(33)	2.355(5)	Ho(2)-O(11)	2.365(4)
Ho(2)-O(10)	2.399(5)	Ho(2)-O(20)	2.405(4)
Ho(2)-N(8)	2.544(6)	Ho(2)-O(1W)	2.623(4)
Ho(3)-O(8)	2.270(4)	Ho(3)-O(33)	2.362(4)
Ho(3)-O(14)	2.369(4)	Ho(3)-O(34)	2.368(4)
Ho(3)-O(15)	2.385(4)	Ho(3)-O(21)	2.405(4)
Ho(3)-N(11)	2.539(5)	Ho(3)-O(1W)	2.643(4)
Ho(3)-O(36)	2.876(6)	Ho(4)-O(42)	2.303(4)
Ho(4)-O(36)	2.328(4)	Ho(4)-O(41)	2.340(4)
Ho(4)-O(35)	2.364(5)	Ho(4)-O(33)	2.383(4)
Ho(4)-O(37)	2.399(4)	Ho(4)-O(16)	2.449(4)
Ho(4)-O(20)	2.453(4)	Ho(5)-O(39)	2.301(4)
Ho(5)-O(40)	2.336(5)	Ho(5)-O(36)	2.342(5)
Ho(5)-O(38)	2.366(4)	Ho(5)-O(35)	2.376(4)
Ho(5)-O(34)	2.387(4)	Ho(5)-O(9)	2.466(5)
Ho(5)-O(21)	2.483(4)	Ho(6)-O(25)	2.242(4)
Ho(6)-O(37)	2.354(4)	Ho(6)-O(38)	2.382(4)
Ho(6)-O(18)	2.383(5)	Ho(6)-O(9)	2.392(4)
Ho(6)-O(19)	2.423(5)	Ho(6)-N(14)	2.578(6)
Ho(6)-O(2W)	2.651(4)	Ho(6)-O(35)	2.735(5)
Ho(7)-O(29)	2.262(4)	Ho(7)-O(38)	2.358(4)
Ho(7)-O(23)	2.369(4)	Ho(7)-O(37)	2.373(4)
Ho(7)-O(16)	2.405(4)	Ho(7)-O(22)	2.411(4)
Ho(7)-N(17)	2.551(5)	Ho(7)-O(2W)	2.646(5)
Ho(8)-O(24)	2.232(4)	Ho(8)-O(17)	2.242(5)
Ho(8)-O(27)	2.355(5)	Ho(8)-O(31)	2.369(5)
Ho(8)-O(26)	2.408(5)	Ho(8)-O(30)	2.424(5)
Ho(8)-N(20)	2.537(6)	Ho(8)-N(23)	2.546(6)
O(12)-Ho(1)-O(13)	107.27(16)	O(12)-Ho(1)-O(6)	153.84(17)
O(1)-Ho(2)-O(34)	81.12(15)	O(1)-Ho(2)-O(33)	133.96(16)
O(8)-Ho(3)-O(33)	81.58(15)	O(8)-Ho(3)-O(14)	89.41(15)
O(42)-Ho(4)-O(36)	153.34(18)	O(42)-Ho(4)-O(41)	74.67(16)
O(39)-Ho(5)-O(40)	74.83(16)	O(39)-Ho(5)-O(36)	150.24(18)
O(25)-Ho(6)-O(37)	79.80(16)	O(25)-Ho(6)-O(38)	133.54(15)
O(29)-Ho(7)-O(38)	80.51(16)	O(29)-Ho(7)-O(23)	90.02(15)

Compound	Geometry Atoms	TDD-8	SAPR-8	HBPY-8	JGBF-8	JTCTPR-9	CSAPR-9
	Gd1	2.169	3.572				
	Gd2					1.557	2.351
	Gd3					1.587	2.276
1	Gd4	1.897	1.707				
1	Gd5	2.176	1.291				
	Gd6					1.806	2.355
	Gd7					1.598	2.484
	Gd8	2.254	3.569				
	Tb1			10.756	12.570		
	Tb2					1.592	2.317
	Tb3	2.715	2.456				
2	Tb4	1.880	1.612				
2	Tb5	2.139	1.415				
	Tb6					1.787	2.362
	Tb7					1.635	2.447
	Tb8	2.258	3.532				
	Dy1	2.074	3.538				
	Dy2	66.780	66.702				
	Dy3					1.588	2.201
3	Dy4	1.872	1.780				
3	Dy5	2.182	1.153				
	Dy6					1.802	2.264
	Dy7	2.539	2.529				
	Dy8	2.194	3.469				
	Ho1	2.114	3.543				
	Ho2	2.721	2.469				
	Ho3					1.530	2.345
	Ho4	1.911	1.703				
	Ho5	2.157	1.297				
	Ho6					1.750	2.372
	Ho7	2.682	2.601				
	Ho8	2.219	3.515				

Table S5. Results of the Continuous Shape Measure Analysisa geometry^a

^aTDD-8 is the shape measure relative to the triangular dodecahedron (D_{2d}); SAPR-8 is the shape measure relative to the square antiprism (D_{4d}); HBPY-8 is the shape measure relative to the hexagonal bipyramid (D_{6h}); JGBF-8 is the shape measure relative to the Johnson gyrobifastigium J26 (D_{2d});

JTCTPR-9 is the shape measure relative to the tricapped trigonal prism J51 (D_{3h}); CSAPR-9 is the shape measure relative to the spherical capped square antiprism (C_{4v}); JCSAPR-9 is the shape measure relative to the capped square antiprism (C_{4v}); CCU-9 is the shape measure relative to the spherical-relaxed capped cube. The number in bold corresponds to the closer ideal geometry to the real complexes.

Figure S1. The thermogravimetry curves of all complexes in an N₂ atmosphere at a heating rate of 10 °C/min. The first weight loss occurred below 200 °C can be attributed to the loss of two lattice methanol molecules. After that, the frameworks of these complexes began to decompose gradually. The loss between 200-260 °C can be due to the loss of twelve free water molecules, two coordination water molecules, two acac⁻ anions and six hydroxyl anions. The result is consistent with the ones of elemental analysis.

Figure S2. Perspective drawing of the cation section of 2 (left), 3 (middle) and 4 (right) showing

the atom numbering. H atoms are omitted for clarity.

Figure S3. Up: One dimensional stacking diagram formed by intercluster hydrogen bonds along the b axis in 1–4. Down: A view showing 3D structure in 1–4.

Figure S4. Plot of $1/\chi_M$ vs *T* for **1**. The red solid line is the fitting result by Curie-Weiss law.

Figure S5. Field dependence of magnetization for 2-4 at 2.0 K.

Figure S6. Temperature dependence of the in-phase χ' and out-of-phase χ'' at different frequencies in a 2.5 Oe ac field oscillating at 100–997 Hz without a dc field for **2** (left) and **4** (right).

Figure S7.Temperature dependence of the in-phase χ' at different frequencies in a 2.5 Oe ac field oscillating at 1–1000 Hz with zero dc field for **3**.

Figure S8. Frequency dependence of the in-phase χ' and out-of-phase χ'' in a 2.5 Oe ac field without a dc field for **3**.

Figure S9. Temperature dependence of the in-phase χ' and out-of-phase χ'' at different frequencies oscillating at 1–1000 Hz with a dc field of 1000 Oe (left) in a 2.5 Oe ac field and 2000 Oe (right) in a 3.0 Oe ac field for **3**.